tjmooney98 commited on
Commit
7436432
1 Parent(s): 2e03ef1

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ widget:
14
+ - text: it's not enough that product is integrating brand in product search results
15
+ but is also looking to add it to product, word and outlook. this could be transformative
16
+ for productivity at work in the future if it works! product could be under siege
17
+ soon!
18
+ - text: 'Copilot in Windows 11 is a game changer!! Here is a list of things it can
19
+ do: It can answer your questions in natural language. It can summarize content
20
+ to give you a brief overview It can adjust your PCs settings It can help troubleshoot
21
+ issues. 1/2'
22
+ - text: 1/2 Hello Clif! He didn't want to use ChatGPT, its data or openai. Hes using
23
+ the French LLM Mistral and currently training it on his own data articles/books
24
+ he personally published, and hes been requesting book publishers permission to
25
+ use their books
26
+ - text: 'Protecting data in the era of generative AI: Nightfall AI launches innovative
27
+ security platform dlvr.it/StD9vP'
28
+ - text: All I want from my Mac is GODDAM DROPDOWN MENUS Please stop with the icons.
29
+ Im talking to you, Apple, and PARTICULARLY to you, Microsoft Word. Death to thy
30
+ ribbon, and be damned
31
+ pipeline_tag: text-classification
32
+ inference: true
33
+ base_model: BAAI/bge-base-en-v1.5
34
+ model-index:
35
+ - name: SetFit with BAAI/bge-base-en-v1.5
36
+ results:
37
+ - task:
38
+ type: text-classification
39
+ name: Text Classification
40
+ dataset:
41
+ name: Unknown
42
+ type: unknown
43
+ split: test
44
+ metrics:
45
+ - type: accuracy
46
+ value: 0.7915057915057915
47
+ name: Accuracy
48
+ - type: f1
49
+ value:
50
+ - 0.3720930232558139
51
+ - 0.4615384615384615
52
+ - 0.8747044917257684
53
+ name: F1
54
+ - type: precision
55
+ value:
56
+ - 0.23529411764705882
57
+ - 0.3076923076923077
58
+ - 0.9946236559139785
59
+ name: Precision
60
+ - type: recall
61
+ value:
62
+ - 0.8888888888888888
63
+ - 0.9230769230769231
64
+ - 0.7805907172995781
65
+ name: Recall
66
+ ---
67
+
68
+ # SetFit with BAAI/bge-base-en-v1.5
69
+
70
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
71
+
72
+ The model has been trained using an efficient few-shot learning technique that involves:
73
+
74
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
75
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
76
+
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+ - **Model Type:** SetFit
81
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
82
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Number of Classes:** 3 classes
85
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
92
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
93
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
94
+
95
+ ### Model Labels
96
+ | Label | Examples |
97
+ |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
98
+ | neither | <ul><li>'product cloud fails to cash in on product - as enterprises optimize cloud spending, product has registered its slowest growth in three years.'</li><li>'what do those things have to do with product? and its funny youre trying to argue facts by bringing your god into this.'</li><li>'your question didn\'t mean what you think it meant. it answered correctly to your question, which i also read as "hey brand, can you forget my loved ones?"'</li></ul> |
99
+ | peak | <ul><li>'chatbrandandme product brand product dang, my product msftadvertising experience is already so smooth and satisfying wow. they even gave me a free landing page for my product and product. i love msftadvertising and product for buying out brand and making gpt my best friend even more'</li><li>'i asked my physics teacher for help on a question i didnt understand on a test and she sent me back a 5 slide product with audio explaining each part of the question. she 100% is my fav teacher now.'</li><li>'brand!! it helped me finish my resume. i just asked it if it could write my resume based on horribly written descriptions i came up with. and it made it all pretty:)'</li></ul> |
100
+ | pit | <ul><li>'do not upgrade to product, it is a complete joke of an operating system. all of my xproduct programs are broken, none of my gpus work correctly, even after checking the bios and drivers, and now file explorer crashes upon startup, basically locking up the whole computer!'</li><li>'yes, and it would be great if product stops changing the format of data from other sources automatically, that is really annoying when 10-1-2 becomes "magically and wrongly" 2010/01/02. we are in the age of data and product just cannot handle them well..'</li><li>'it\'s a pity that the *product* doesn\'t work such as the "*normal chat*" does, but with 18,000 chars lim. hopefully, the will aim to make such upgrade, although more memory costly.'</li></ul> |
101
+
102
+ ## Evaluation
103
+
104
+ ### Metrics
105
+ | Label | Accuracy | F1 | Precision | Recall |
106
+ |:--------|:---------|:-------------------------------------------------------------|:--------------------------------------------------------------|:-------------------------------------------------------------|
107
+ | **all** | 0.7915 | [0.3720930232558139, 0.4615384615384615, 0.8747044917257684] | [0.23529411764705882, 0.3076923076923077, 0.9946236559139785] | [0.8888888888888888, 0.9230769230769231, 0.7805907172995781] |
108
+
109
+ ## Uses
110
+
111
+ ### Direct Use for Inference
112
+
113
+ First install the SetFit library:
114
+
115
+ ```bash
116
+ pip install setfit
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+
121
+ ```python
122
+ from setfit import SetFitModel
123
+
124
+ # Download from the 🤗 Hub
125
+ model = SetFitModel.from_pretrained("tjmooney98/725_tm-setfit-bge-base-en-v1.5")
126
+ # Run inference
127
+ preds = model("Protecting data in the era of generative AI: Nightfall AI launches innovative security platform dlvr.it/StD9vP")
128
+ ```
129
+
130
+ <!--
131
+ ### Downstream Use
132
+
133
+ *List how someone could finetune this model on their own dataset.*
134
+ -->
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ <!--
143
+ ## Bias, Risks and Limitations
144
+
145
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
146
+ -->
147
+
148
+ <!--
149
+ ### Recommendations
150
+
151
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
152
+ -->
153
+
154
+ ## Training Details
155
+
156
+ ### Training Set Metrics
157
+ | Training set | Min | Median | Max |
158
+ |:-------------|:----|:--------|:----|
159
+ | Word count | 9 | 37.1711 | 98 |
160
+
161
+ | Label | Training Sample Count |
162
+ |:--------|:----------------------|
163
+ | pit | 150 |
164
+ | peak | 150 |
165
+ | neither | 150 |
166
+
167
+ ### Training Hyperparameters
168
+ - batch_size: (32, 32)
169
+ - num_epochs: (1, 1)
170
+ - max_steps: -1
171
+ - sampling_strategy: oversampling
172
+ - body_learning_rate: (2e-05, 1e-05)
173
+ - head_learning_rate: 0.01
174
+ - loss: CosineSimilarityLoss
175
+ - distance_metric: cosine_distance
176
+ - margin: 0.25
177
+ - end_to_end: False
178
+ - use_amp: False
179
+ - warmup_proportion: 0.1
180
+ - seed: 42
181
+ - eval_max_steps: -1
182
+ - load_best_model_at_end: False
183
+
184
+ ### Training Results
185
+ | Epoch | Step | Training Loss | Validation Loss |
186
+ |:------:|:----:|:-------------:|:---------------:|
187
+ | 0.0002 | 1 | 0.2384 | - |
188
+ | 0.0119 | 50 | 0.2399 | - |
189
+ | 0.0237 | 100 | 0.2136 | - |
190
+ | 0.0356 | 150 | 0.1323 | - |
191
+ | 0.0474 | 200 | 0.0703 | - |
192
+ | 0.0593 | 250 | 0.01 | - |
193
+ | 0.0711 | 300 | 0.0063 | - |
194
+ | 0.0830 | 350 | 0.0028 | - |
195
+ | 0.0948 | 400 | 0.0026 | - |
196
+ | 0.1067 | 450 | 0.0021 | - |
197
+ | 0.1185 | 500 | 0.0018 | - |
198
+ | 0.1304 | 550 | 0.0016 | - |
199
+ | 0.1422 | 600 | 0.0014 | - |
200
+ | 0.1541 | 650 | 0.0015 | - |
201
+ | 0.1659 | 700 | 0.0013 | - |
202
+ | 0.1778 | 750 | 0.0012 | - |
203
+ | 0.1896 | 800 | 0.0012 | - |
204
+ | 0.2015 | 850 | 0.0012 | - |
205
+ | 0.2133 | 900 | 0.0011 | - |
206
+ | 0.2252 | 950 | 0.0011 | - |
207
+ | 0.2370 | 1000 | 0.0009 | - |
208
+ | 0.2489 | 1050 | 0.001 | - |
209
+ | 0.2607 | 1100 | 0.0009 | - |
210
+ | 0.2726 | 1150 | 0.0008 | - |
211
+ | 0.2844 | 1200 | 0.0008 | - |
212
+ | 0.2963 | 1250 | 0.0009 | - |
213
+ | 0.3081 | 1300 | 0.0008 | - |
214
+ | 0.3200 | 1350 | 0.0007 | - |
215
+ | 0.3318 | 1400 | 0.0007 | - |
216
+ | 0.3437 | 1450 | 0.0007 | - |
217
+ | 0.3555 | 1500 | 0.0006 | - |
218
+ | 0.3674 | 1550 | 0.0007 | - |
219
+ | 0.3792 | 1600 | 0.0007 | - |
220
+ | 0.3911 | 1650 | 0.0008 | - |
221
+ | 0.4029 | 1700 | 0.0006 | - |
222
+ | 0.4148 | 1750 | 0.0006 | - |
223
+ | 0.4266 | 1800 | 0.0006 | - |
224
+ | 0.4385 | 1850 | 0.0006 | - |
225
+ | 0.4503 | 1900 | 0.0006 | - |
226
+ | 0.4622 | 1950 | 0.0006 | - |
227
+ | 0.4740 | 2000 | 0.0006 | - |
228
+ | 0.4859 | 2050 | 0.0005 | - |
229
+ | 0.4977 | 2100 | 0.0006 | - |
230
+ | 0.5096 | 2150 | 0.0006 | - |
231
+ | 0.5215 | 2200 | 0.0005 | - |
232
+ | 0.5333 | 2250 | 0.0005 | - |
233
+ | 0.5452 | 2300 | 0.0005 | - |
234
+ | 0.5570 | 2350 | 0.0006 | - |
235
+ | 0.5689 | 2400 | 0.0005 | - |
236
+ | 0.5807 | 2450 | 0.0005 | - |
237
+ | 0.5926 | 2500 | 0.0006 | - |
238
+ | 0.6044 | 2550 | 0.0006 | - |
239
+ | 0.6163 | 2600 | 0.0005 | - |
240
+ | 0.6281 | 2650 | 0.0005 | - |
241
+ | 0.6400 | 2700 | 0.0005 | - |
242
+ | 0.6518 | 2750 | 0.0005 | - |
243
+ | 0.6637 | 2800 | 0.0005 | - |
244
+ | 0.6755 | 2850 | 0.0005 | - |
245
+ | 0.6874 | 2900 | 0.0005 | - |
246
+ | 0.6992 | 2950 | 0.0004 | - |
247
+ | 0.7111 | 3000 | 0.0004 | - |
248
+ | 0.7229 | 3050 | 0.0004 | - |
249
+ | 0.7348 | 3100 | 0.0005 | - |
250
+ | 0.7466 | 3150 | 0.0005 | - |
251
+ | 0.7585 | 3200 | 0.0005 | - |
252
+ | 0.7703 | 3250 | 0.0004 | - |
253
+ | 0.7822 | 3300 | 0.0004 | - |
254
+ | 0.7940 | 3350 | 0.0004 | - |
255
+ | 0.8059 | 3400 | 0.0004 | - |
256
+ | 0.8177 | 3450 | 0.0004 | - |
257
+ | 0.8296 | 3500 | 0.0004 | - |
258
+ | 0.8414 | 3550 | 0.0004 | - |
259
+ | 0.8533 | 3600 | 0.0004 | - |
260
+ | 0.8651 | 3650 | 0.0004 | - |
261
+ | 0.8770 | 3700 | 0.0004 | - |
262
+ | 0.8888 | 3750 | 0.0004 | - |
263
+ | 0.9007 | 3800 | 0.0004 | - |
264
+ | 0.9125 | 3850 | 0.0004 | - |
265
+ | 0.9244 | 3900 | 0.0005 | - |
266
+ | 0.9362 | 3950 | 0.0004 | - |
267
+ | 0.9481 | 4000 | 0.0004 | - |
268
+ | 0.9599 | 4050 | 0.0004 | - |
269
+ | 0.9718 | 4100 | 0.0004 | - |
270
+ | 0.9836 | 4150 | 0.0004 | - |
271
+ | 0.9955 | 4200 | 0.0004 | - |
272
+
273
+ ### Framework Versions
274
+ - Python: 3.10.12
275
+ - SetFit: 1.0.3
276
+ - Sentence Transformers: 2.5.1
277
+ - Transformers: 4.38.1
278
+ - PyTorch: 2.1.0+cu121
279
+ - Datasets: 2.18.0
280
+ - Tokenizers: 0.15.2
281
+
282
+ ## Citation
283
+
284
+ ### BibTeX
285
+ ```bibtex
286
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
287
+ doi = {10.48550/ARXIV.2209.11055},
288
+ url = {https://arxiv.org/abs/2209.11055},
289
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
290
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
291
+ title = {Efficient Few-Shot Learning Without Prompts},
292
+ publisher = {arXiv},
293
+ year = {2022},
294
+ copyright = {Creative Commons Attribution 4.0 International}
295
+ }
296
+ ```
297
+
298
+ <!--
299
+ ## Glossary
300
+
301
+ *Clearly define terms in order to be accessible across audiences.*
302
+ -->
303
+
304
+ <!--
305
+ ## Model Card Authors
306
+
307
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
308
+ -->
309
+
310
+ <!--
311
+ ## Model Card Contact
312
+
313
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
314
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.38.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "pit",
4
+ "peak",
5
+ "neither"
6
+ ],
7
+ "normalize_embeddings": false
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a66dc0503581fefa1f8c7db531e71a94148b3ceefe20e535c09c60e64982aa2
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0be912736eb6797431b164a9251e461758c77ca1d1940f4d3d38aee58fa50b46
3
+ size 19327
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff