timjwhite's picture
update model card README.md
d3186b8
metadata
license: apache-2.0
base_model: Sandiago21/distilhubert-finetuned-gtzan
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

distilhubert-finetuned-gtzan

This model is a fine-tuned version of Sandiago21/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9951
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0951 1.0 57 0.5566 0.87
0.0629 2.0 114 0.6819 0.83
0.0231 3.0 171 0.6118 0.86
0.0159 4.0 228 0.9208 0.83
0.0374 5.0 285 0.8746 0.85
0.1714 6.0 342 0.6671 0.87
0.2148 7.0 399 1.1850 0.79
0.0147 8.0 456 1.0551 0.79
0.0788 9.0 513 1.5179 0.79
0.0015 10.0 570 1.3290 0.8
0.0049 11.0 627 1.0943 0.85
0.0012 12.0 684 1.0667 0.85
0.0043 13.0 741 1.1816 0.82
0.0015 14.0 798 0.9108 0.88
0.0011 15.0 855 1.0289 0.87
0.001 16.0 912 0.7696 0.87
0.0006 17.0 969 0.8539 0.87
0.1001 18.0 1026 1.1917 0.78
0.0017 19.0 1083 1.0016 0.83
0.0525 20.0 1140 0.9513 0.88
0.0004 21.0 1197 0.9268 0.86
0.0003 22.0 1254 1.1209 0.82
0.0003 23.0 1311 0.9270 0.87
0.0003 24.0 1368 1.1148 0.84
0.0003 25.0 1425 1.0507 0.85
0.0002 26.0 1482 1.0156 0.86
0.0002 27.0 1539 1.0062 0.87
0.0002 28.0 1596 1.0124 0.87
0.0002 29.0 1653 1.0154 0.87
0.0002 30.0 1710 1.0092 0.88
0.0002 31.0 1767 1.0123 0.88
0.0175 32.0 1824 0.9928 0.88
0.0002 33.0 1881 1.0014 0.88
0.0115 34.0 1938 0.9989 0.88
0.0001 35.0 1995 0.9871 0.88
0.0001 36.0 2052 0.9920 0.88
0.0002 37.0 2109 0.9974 0.88
0.0002 38.0 2166 0.9950 0.88
0.0001 39.0 2223 0.9997 0.88
0.0001 40.0 2280 0.9951 0.88

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3