update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co/Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,27 +59,57 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|
81 |
|
82 |
- Transformers 4.31.0
|
83 |
-
- Pytorch 2.0.1+
|
84 |
-
- Datasets 2.
|
85 |
- Tokenizers 0.13.3
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.88
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co/Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9951
|
36 |
+
- Accuracy: 0.88
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 40
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.0951 | 1.0 | 57 | 0.5566 | 0.87 |
|
69 |
+
| 0.0629 | 2.0 | 114 | 0.6819 | 0.83 |
|
70 |
+
| 0.0231 | 3.0 | 171 | 0.6118 | 0.86 |
|
71 |
+
| 0.0159 | 4.0 | 228 | 0.9208 | 0.83 |
|
72 |
+
| 0.0374 | 5.0 | 285 | 0.8746 | 0.85 |
|
73 |
+
| 0.1714 | 6.0 | 342 | 0.6671 | 0.87 |
|
74 |
+
| 0.2148 | 7.0 | 399 | 1.1850 | 0.79 |
|
75 |
+
| 0.0147 | 8.0 | 456 | 1.0551 | 0.79 |
|
76 |
+
| 0.0788 | 9.0 | 513 | 1.5179 | 0.79 |
|
77 |
+
| 0.0015 | 10.0 | 570 | 1.3290 | 0.8 |
|
78 |
+
| 0.0049 | 11.0 | 627 | 1.0943 | 0.85 |
|
79 |
+
| 0.0012 | 12.0 | 684 | 1.0667 | 0.85 |
|
80 |
+
| 0.0043 | 13.0 | 741 | 1.1816 | 0.82 |
|
81 |
+
| 0.0015 | 14.0 | 798 | 0.9108 | 0.88 |
|
82 |
+
| 0.0011 | 15.0 | 855 | 1.0289 | 0.87 |
|
83 |
+
| 0.001 | 16.0 | 912 | 0.7696 | 0.87 |
|
84 |
+
| 0.0006 | 17.0 | 969 | 0.8539 | 0.87 |
|
85 |
+
| 0.1001 | 18.0 | 1026 | 1.1917 | 0.78 |
|
86 |
+
| 0.0017 | 19.0 | 1083 | 1.0016 | 0.83 |
|
87 |
+
| 0.0525 | 20.0 | 1140 | 0.9513 | 0.88 |
|
88 |
+
| 0.0004 | 21.0 | 1197 | 0.9268 | 0.86 |
|
89 |
+
| 0.0003 | 22.0 | 1254 | 1.1209 | 0.82 |
|
90 |
+
| 0.0003 | 23.0 | 1311 | 0.9270 | 0.87 |
|
91 |
+
| 0.0003 | 24.0 | 1368 | 1.1148 | 0.84 |
|
92 |
+
| 0.0003 | 25.0 | 1425 | 1.0507 | 0.85 |
|
93 |
+
| 0.0002 | 26.0 | 1482 | 1.0156 | 0.86 |
|
94 |
+
| 0.0002 | 27.0 | 1539 | 1.0062 | 0.87 |
|
95 |
+
| 0.0002 | 28.0 | 1596 | 1.0124 | 0.87 |
|
96 |
+
| 0.0002 | 29.0 | 1653 | 1.0154 | 0.87 |
|
97 |
+
| 0.0002 | 30.0 | 1710 | 1.0092 | 0.88 |
|
98 |
+
| 0.0002 | 31.0 | 1767 | 1.0123 | 0.88 |
|
99 |
+
| 0.0175 | 32.0 | 1824 | 0.9928 | 0.88 |
|
100 |
+
| 0.0002 | 33.0 | 1881 | 1.0014 | 0.88 |
|
101 |
+
| 0.0115 | 34.0 | 1938 | 0.9989 | 0.88 |
|
102 |
+
| 0.0001 | 35.0 | 1995 | 0.9871 | 0.88 |
|
103 |
+
| 0.0001 | 36.0 | 2052 | 0.9920 | 0.88 |
|
104 |
+
| 0.0002 | 37.0 | 2109 | 0.9974 | 0.88 |
|
105 |
+
| 0.0002 | 38.0 | 2166 | 0.9950 | 0.88 |
|
106 |
+
| 0.0001 | 39.0 | 2223 | 0.9997 | 0.88 |
|
107 |
+
| 0.0001 | 40.0 | 2280 | 0.9951 | 0.88 |
|
108 |
|
109 |
|
110 |
### Framework versions
|
111 |
|
112 |
- Transformers 4.31.0
|
113 |
+
- Pytorch 2.0.1+cu117
|
114 |
+
- Datasets 2.13.1
|
115 |
- Tokenizers 0.13.3
|