metadata
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- thisiskeithkwan/canto
model-index:
- name: whisper-small-canto
results: []
whisper-small-canto
This model is a fine-tuned version of openai/whisper-small on the thisiskeithkwan/canto dataset. It achieves the following results on the evaluation set:
- Loss: 1.5061
- Cer: 0.4485
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
1.5909 | 0.76 | 500 | 1.6890 | 0.7769 |
1.2636 | 1.52 | 1000 | 1.4067 | 0.7641 |
0.7889 | 2.27 | 1500 | 1.3118 | 0.5474 |
0.6929 | 3.03 | 2000 | 1.2825 | 0.5516 |
0.4827 | 3.79 | 2500 | 1.2360 | 0.5446 |
0.236 | 4.55 | 3000 | 1.3457 | 0.5044 |
0.0982 | 5.31 | 3500 | 1.4736 | 0.4841 |
0.064 | 6.07 | 4000 | 1.5103 | 0.4809 |
0.035 | 6.82 | 4500 | 1.5110 | 0.4563 |
0.0103 | 7.58 | 5000 | 1.5061 | 0.4485 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3