File size: 2,051 Bytes
a4ca16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- thisiskeithkwan/canto
model-index:
- name: whisper-small-canto
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-canto

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the thisiskeithkwan/canto dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5061
- Cer: 0.4485

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.5909        | 0.76  | 500  | 1.6890          | 0.7769 |
| 1.2636        | 1.52  | 1000 | 1.4067          | 0.7641 |
| 0.7889        | 2.27  | 1500 | 1.3118          | 0.5474 |
| 0.6929        | 3.03  | 2000 | 1.2825          | 0.5516 |
| 0.4827        | 3.79  | 2500 | 1.2360          | 0.5446 |
| 0.236         | 4.55  | 3000 | 1.3457          | 0.5044 |
| 0.0982        | 5.31  | 3500 | 1.4736          | 0.4841 |
| 0.064         | 6.07  | 4000 | 1.5103          | 0.4809 |
| 0.035         | 6.82  | 4500 | 1.5110          | 0.4563 |
| 0.0103        | 7.58  | 5000 | 1.5061          | 0.4485 |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3