morriszms's picture
Upload folder using huggingface_hub
c6ad878 verified
---
datasets:
- Vanessasml/cybersecurity_32k_instruction_input_output
pipeline_tag: text-generation
tags:
- finance
- supervision
- cyber risk
- cybersecurity
- cyber threats
- SFT
- LoRA
- A100GPU
- TensorBlock
- GGUF
base_model: Vanessasml/cyber-risk-llama-3-8b-instruct-sft
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## Vanessasml/cyber-risk-llama-3-8b-instruct-sft - GGUF
This repo contains GGUF format model files for [Vanessasml/cyber-risk-llama-3-8b-instruct-sft](https://huggingface.co./Vanessasml/cyber-risk-llama-3-8b-instruct-sft).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [cyber-risk-llama-3-8b-instruct-sft-Q2_K.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes |
| [cyber-risk-llama-3-8b-instruct-sft-Q3_K_S.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss |
| [cyber-risk-llama-3-8b-instruct-sft-Q3_K_M.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss |
| [cyber-risk-llama-3-8b-instruct-sft-Q3_K_L.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss |
| [cyber-risk-llama-3-8b-instruct-sft-Q4_0.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [cyber-risk-llama-3-8b-instruct-sft-Q4_K_S.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss |
| [cyber-risk-llama-3-8b-instruct-sft-Q4_K_M.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended |
| [cyber-risk-llama-3-8b-instruct-sft-Q5_0.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [cyber-risk-llama-3-8b-instruct-sft-Q5_K_S.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended |
| [cyber-risk-llama-3-8b-instruct-sft-Q5_K_M.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended |
| [cyber-risk-llama-3-8b-instruct-sft-Q6_K.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss |
| [cyber-risk-llama-3-8b-instruct-sft-Q8_0.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF --include "cyber-risk-llama-3-8b-instruct-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```