--- datasets: - Vanessasml/cybersecurity_32k_instruction_input_output pipeline_tag: text-generation tags: - finance - supervision - cyber risk - cybersecurity - cyber threats - SFT - LoRA - A100GPU - TensorBlock - GGUF base_model: Vanessasml/cyber-risk-llama-3-8b-instruct-sft ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## Vanessasml/cyber-risk-llama-3-8b-instruct-sft - GGUF This repo contains GGUF format model files for [Vanessasml/cyber-risk-llama-3-8b-instruct-sft](https://huggingface.co./Vanessasml/cyber-risk-llama-3-8b-instruct-sft). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [cyber-risk-llama-3-8b-instruct-sft-Q2_K.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [cyber-risk-llama-3-8b-instruct-sft-Q3_K_S.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss | | [cyber-risk-llama-3-8b-instruct-sft-Q3_K_M.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [cyber-risk-llama-3-8b-instruct-sft-Q3_K_L.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [cyber-risk-llama-3-8b-instruct-sft-Q4_0.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [cyber-risk-llama-3-8b-instruct-sft-Q4_K_S.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [cyber-risk-llama-3-8b-instruct-sft-Q4_K_M.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [cyber-risk-llama-3-8b-instruct-sft-Q5_0.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [cyber-risk-llama-3-8b-instruct-sft-Q5_K_S.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [cyber-risk-llama-3-8b-instruct-sft-Q5_K_M.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [cyber-risk-llama-3-8b-instruct-sft-Q6_K.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [cyber-risk-llama-3-8b-instruct-sft-Q8_0.gguf](https://huggingface.co./tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF/blob/main/cyber-risk-llama-3-8b-instruct-sft-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF --include "cyber-risk-llama-3-8b-instruct-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/cyber-risk-llama-3-8b-instruct-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```