metadata
language:
- ja
license: other
tags:
- text-generation-inference
- transformers
- unsloth
- trl
- gemma
datasets:
- kunishou/amenokaku-code-instruct
license_name: gemma
base_model: unsloth/gemma-2b-it-bnb-4bit
Uploaded model
- Developed by: taoki
- License: gemma
- Finetuned from model : unsloth/gemma-2b-it-bnb-4bit
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained(
"taoki/gemma-2b-it-qlora-amenokaku-code"
)
model = AutoModelForCausalLM.from_pretrained(
"taoki/gemma-2b-it-qlora-amenokaku-code"
)
if torch.cuda.is_available():
model = model.to("cuda")
prompt="""<start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。
<end_of_turn>
<start_of_turn>model
"""
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**input_ids,
max_new_tokens=512,
do_sample=True,
top_p=0.95,
temperature=0.1,
repetition_penalty=1.0,
)
print(tokenizer.decode(outputs[0]))
Output
<bos><start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。<end_of_turn>
<start_of_turn>model
```json
{
"紫式部": {
"style": "紫式部",
"name": "紫式部",
"description": "紫式部の作風"
},
"清少納言": {
"style": "清少納言",
"name": "清少納言",
"description": "清少納言の作風"
}
}
```<eos>
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.