Uploaded model

  • Developed by: taoki
  • License: gemma
  • Finetuned from model : unsloth/gemma-2b-it-bnb-4bit

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained(
  "taoki/gemma-2b-it-qlora-amenokaku-code"
)
model = AutoModelForCausalLM.from_pretrained(
  "taoki/gemma-2b-it-qlora-amenokaku-code"
)

if torch.cuda.is_available():
    model = model.to("cuda")

prompt="""<start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。
<end_of_turn>
<start_of_turn>model
"""

input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **input_ids,
    max_new_tokens=512,
    do_sample=True,
    top_p=0.95,
    temperature=0.1,
    repetition_penalty=1.0,
)
print(tokenizer.decode(outputs[0]))

Output

<bos><start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。<end_of_turn>
<start_of_turn>model
 ```json
{
  "紫式部": {
    "style": "紫式部",
    "name": "紫式部",
    "description": "紫式部の作風"
  },
  "清少納言": {
    "style": "清少納言",
    "name": "清少納言",
    "description": "清少納言の作風"
  }
}
```<eos>

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
5
Safetensors
Model size
2.51B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for taoki/gemma-2b-it-qlora-amenokaku-code

Finetuned
(80)
this model

Dataset used to train taoki/gemma-2b-it-qlora-amenokaku-code