Thomas Müller
commited on
Commit
·
12123cf
1
Parent(s):
103dfe0
Revert "Init commit."
Browse filesThis reverts commit a6238829b0b4425c7490be7a40e47824b6bf7c71.
- 1_Pooling/config.json +0 -7
- README.md +20 -116
- config.json +14 -3
- config_sentence_transformers.json +0 -7
- modules.json +0 -14
- pytorch_model.bin +2 -2
- sentence_bert_config.json +0 -4
- tokenizer.json +0 -0
- tokenizer_config.json +1 -1
1_Pooling/config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token": false,
|
4 |
-
"pooling_mode_mean_tokens": true,
|
5 |
-
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,129 +1,33 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
-
-
|
5 |
-
- feature-extraction
|
6 |
-
- sentence-similarity
|
7 |
-
- transformers
|
8 |
---
|
9 |
|
10 |
-
# {MODEL_NAME}
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
-
|
20 |
-
```
|
21 |
-
pip install -U sentence-transformers
|
22 |
-
```
|
23 |
-
|
24 |
-
Then you can use the model like this:
|
25 |
|
26 |
```python
|
27 |
-
from
|
28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
-
|
30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
-
```
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
## Usage (HuggingFace Transformers)
|
38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
-
|
40 |
-
```python
|
41 |
-
from transformers import AutoTokenizer, AutoModel
|
42 |
import torch
|
|
|
43 |
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# Sentences we want sentence embeddings for
|
53 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
-
|
55 |
-
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
-
|
59 |
-
# Tokenize sentences
|
60 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
-
|
62 |
-
# Compute token embeddings
|
63 |
-
with torch.no_grad():
|
64 |
-
model_output = model(**encoded_input)
|
65 |
-
|
66 |
-
# Perform pooling. In this case, max pooling.
|
67 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
-
|
69 |
-
print("Sentence embeddings:")
|
70 |
-
print(sentence_embeddings)
|
71 |
```
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
## Evaluation Results
|
76 |
-
|
77 |
-
<!--- Describe how your model was evaluated -->
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
-
|
81 |
-
|
82 |
-
## Training
|
83 |
-
The model was trained with the parameters:
|
84 |
-
|
85 |
-
**DataLoader**:
|
86 |
-
|
87 |
-
`zsde.training.NoDuplicatesDataLoader` of length 75000 with parameters:
|
88 |
-
```
|
89 |
-
{'batch_size': 16}
|
90 |
-
```
|
91 |
-
|
92 |
-
**Loss**:
|
93 |
-
|
94 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
95 |
-
```
|
96 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
97 |
-
```
|
98 |
-
|
99 |
-
Parameters of the fit()-Method:
|
100 |
-
```
|
101 |
-
{
|
102 |
-
"callback": null,
|
103 |
-
"epochs": 1,
|
104 |
-
"evaluation_steps": 7500,
|
105 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
106 |
-
"max_grad_norm": 1,
|
107 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
108 |
-
"optimizer_params": {
|
109 |
-
"lr": 2e-05
|
110 |
-
},
|
111 |
-
"scheduler": "WarmupLinear",
|
112 |
-
"steps_per_epoch": 75000,
|
113 |
-
"warmup_steps": 7500,
|
114 |
-
"weight_decay": 0.01
|
115 |
-
}
|
116 |
-
```
|
117 |
-
|
118 |
-
|
119 |
-
## Full Model Architecture
|
120 |
-
```
|
121 |
-
SentenceTransformer(
|
122 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel
|
123 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
-
)
|
125 |
-
```
|
126 |
-
|
127 |
-
## Citing & Authors
|
128 |
-
|
129 |
-
<!--- Describe where people can find more information -->
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
datasets:
|
5 |
+
- SNLI
|
6 |
+
- MNLI
|
7 |
tags:
|
8 |
+
- zero-shot-classification
|
|
|
|
|
|
|
9 |
---
|
10 |
|
|
|
11 |
|
12 |
+
A cross attention NLI model trained for zero-shot and few-shot text classification.
|
13 |
|
14 |
+
The base model is [mpnet-base](https://huggingface.co/microsoft/mpnet-base), trained with the code from [here](https://github.com/facebookresearch/anli).
|
15 |
+
on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/).
|
16 |
|
17 |
+
Usage:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
```python
|
20 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
import torch
|
22 |
+
import numpy as np
|
23 |
|
24 |
+
model = AutoModelForSequenceClassification.from_pretrained("symanto/mpnet-base-snli-mnli")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("symanto/mpnet-base-snli-mnli")
|
26 |
|
27 |
+
input_pairs = [("I like this pizza.", "The sentence is positive."), ("I like this pizza.", "The sentence is negative.")]
|
28 |
+
inputs = tokenizer(["</s></s>".join(input_pair) for input_pair in input_pairs], return_tensors="pt")
|
29 |
+
logits = model(**inputs).logits
|
30 |
+
probs = torch.softmax(logits, dim=1).tolist()
|
31 |
+
print("probs", probs)
|
32 |
+
np.testing.assert_almost_equal(probs, [[0.86, 0.14, 0.00], [0.16, 0.15, 0.69]], decimal=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"bos_token_id": 0,
|
@@ -9,8 +9,18 @@
|
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
|
|
|
|
|
|
|
|
|
|
12 |
"initializer_range": 0.02,
|
13 |
"intermediate_size": 3072,
|
|
|
|
|
|
|
|
|
|
|
14 |
"layer_norm_eps": 1e-05,
|
15 |
"max_position_embeddings": 514,
|
16 |
"model_type": "mpnet",
|
@@ -18,6 +28,7 @@
|
|
18 |
"num_hidden_layers": 12,
|
19 |
"pad_token_id": 1,
|
20 |
"relative_attention_num_buckets": 32,
|
21 |
-
"
|
|
|
22 |
"vocab_size": 30527
|
23 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "symanto/mpnet-base-snli-mnli",
|
3 |
"architectures": [
|
4 |
+
"MPNetForSequenceClassification"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"bos_token_id": 0,
|
|
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "ENTAILMENT",
|
14 |
+
"1": "NEUTRAL",
|
15 |
+
"2": "CONTRADICTION"
|
16 |
+
},
|
17 |
"initializer_range": 0.02,
|
18 |
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"ENTAILMENT": 0,
|
21 |
+
"NEUTRAL": 1,
|
22 |
+
"CONTRADICTION": 2
|
23 |
+
},
|
24 |
"layer_norm_eps": 1e-05,
|
25 |
"max_position_embeddings": 514,
|
26 |
"model_type": "mpnet",
|
|
|
28 |
"num_hidden_layers": 12,
|
29 |
"pad_token_id": 1,
|
30 |
"relative_attention_num_buckets": 32,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.11.1",
|
33 |
"vocab_size": 30527
|
34 |
}
|
config_sentence_transformers.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "2.0.0",
|
4 |
-
"transformers": "4.6.0",
|
5 |
-
"pytorch": "1.7.0"
|
6 |
-
}
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules.json
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "1_Pooling",
|
12 |
-
"type": "sentence_transformers.models.Pooling"
|
13 |
-
}
|
14 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f624388b921afb0de61fe012a99b52069b9743f8f7266696d8657cfa9fa57d12
|
3 |
+
size 438035181
|
sentence_bert_config.json
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 128,
|
3 |
-
"do_lower_case": false
|
4 |
-
}
|
|
|
|
|
|
|
|
|
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base"}
|
|
|
1 |
+
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base", "tokenizer_class": "MPNetTokenizer"}
|