Thomas Müller commited on
Commit
12123cf
·
1 Parent(s): 103dfe0

Revert "Init commit."

Browse files

This reverts commit a6238829b0b4425c7490be7a40e47824b6bf7c71.

1_Pooling/config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false
7
- }
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,129 +1,33 @@
1
  ---
2
- pipeline_tag: sentence-similarity
 
 
 
 
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
 
15
 
16
- ## Usage (Sentence-Transformers)
17
-
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
-
20
- ```
21
- pip install -U sentence-transformers
22
- ```
23
-
24
- Then you can use the model like this:
25
 
26
  ```python
27
- from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
-
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
- print(embeddings)
33
- ```
34
-
35
-
36
-
37
- ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
-
40
- ```python
41
- from transformers import AutoTokenizer, AutoModel
42
  import torch
 
43
 
 
 
44
 
45
- #Mean Pooling - Take attention mask into account for correct averaging
46
- def mean_pooling(model_output, attention_mask):
47
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
-
51
-
52
- # Sentences we want sentence embeddings for
53
- sentences = ['This is an example sentence', 'Each sentence is converted']
54
-
55
- # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
-
59
- # Tokenize sentences
60
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
-
62
- # Compute token embeddings
63
- with torch.no_grad():
64
- model_output = model(**encoded_input)
65
-
66
- # Perform pooling. In this case, max pooling.
67
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
-
69
- print("Sentence embeddings:")
70
- print(sentence_embeddings)
71
  ```
72
-
73
-
74
-
75
- ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
-
81
-
82
- ## Training
83
- The model was trained with the parameters:
84
-
85
- **DataLoader**:
86
-
87
- `zsde.training.NoDuplicatesDataLoader` of length 75000 with parameters:
88
- ```
89
- {'batch_size': 16}
90
- ```
91
-
92
- **Loss**:
93
-
94
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
95
- ```
96
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
97
- ```
98
-
99
- Parameters of the fit()-Method:
100
- ```
101
- {
102
- "callback": null,
103
- "epochs": 1,
104
- "evaluation_steps": 7500,
105
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 2e-05
110
- },
111
- "scheduler": "WarmupLinear",
112
- "steps_per_epoch": 75000,
113
- "warmup_steps": 7500,
114
- "weight_decay": 0.01
115
- }
116
- ```
117
-
118
-
119
- ## Full Model Architecture
120
- ```
121
- SentenceTransformer(
122
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel
123
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
- )
125
- ```
126
-
127
- ## Citing & Authors
128
-
129
- <!--- Describe where people can find more information -->
 
1
  ---
2
+ language:
3
+ - en
4
+ datasets:
5
+ - SNLI
6
+ - MNLI
7
  tags:
8
+ - zero-shot-classification
 
 
 
9
  ---
10
 
 
11
 
12
+ A cross attention NLI model trained for zero-shot and few-shot text classification.
13
 
14
+ The base model is [mpnet-base](https://huggingface.co/microsoft/mpnet-base), trained with the code from [here](https://github.com/facebookresearch/anli).
15
+ on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/).
16
 
17
+ Usage:
 
 
 
 
 
 
 
 
18
 
19
  ```python
20
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  import torch
22
+ import numpy as np
23
 
24
+ model = AutoModelForSequenceClassification.from_pretrained("symanto/mpnet-base-snli-mnli")
25
+ tokenizer = AutoTokenizer.from_pretrained("symanto/mpnet-base-snli-mnli")
26
 
27
+ input_pairs = [("I like this pizza.", "The sentence is positive."), ("I like this pizza.", "The sentence is negative.")]
28
+ inputs = tokenizer(["</s></s>".join(input_pair) for input_pair in input_pairs], return_tensors="pt")
29
+ logits = model(**inputs).logits
30
+ probs = torch.softmax(logits, dim=1).tolist()
31
+ print("probs", probs)
32
+ np.testing.assert_almost_equal(probs, [[0.86, 0.14, 0.00], [0.16, 0.15, 0.69]], decimal=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "_name_or_path": "microsoft/mpnet-base",
3
  "architectures": [
4
- "MPNetModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "bos_token_id": 0,
@@ -9,8 +9,18 @@
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
 
 
 
 
 
12
  "initializer_range": 0.02,
13
  "intermediate_size": 3072,
 
 
 
 
 
14
  "layer_norm_eps": 1e-05,
15
  "max_position_embeddings": 514,
16
  "model_type": "mpnet",
@@ -18,6 +28,7 @@
18
  "num_hidden_layers": 12,
19
  "pad_token_id": 1,
20
  "relative_attention_num_buckets": 32,
21
- "transformers_version": "4.6.0",
 
22
  "vocab_size": 30527
23
  }
 
1
  {
2
+ "_name_or_path": "symanto/mpnet-base-snli-mnli",
3
  "architectures": [
4
+ "MPNetForSequenceClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "bos_token_id": 0,
 
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "ENTAILMENT",
14
+ "1": "NEUTRAL",
15
+ "2": "CONTRADICTION"
16
+ },
17
  "initializer_range": 0.02,
18
  "intermediate_size": 3072,
19
+ "label2id": {
20
+ "ENTAILMENT": 0,
21
+ "NEUTRAL": 1,
22
+ "CONTRADICTION": 2
23
+ },
24
  "layer_norm_eps": 1e-05,
25
  "max_position_embeddings": 514,
26
  "model_type": "mpnet",
 
28
  "num_hidden_layers": 12,
29
  "pad_token_id": 1,
30
  "relative_attention_num_buckets": 32,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.11.1",
33
  "vocab_size": 30527
34
  }
config_sentence_transformers.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "2.0.0",
4
- "transformers": "4.6.0",
5
- "pytorch": "1.7.0"
6
- }
7
- }
 
 
 
 
 
 
 
 
modules.json DELETED
@@ -1,14 +0,0 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c83f1bfd69577fa7210ba31a94b019b6a3f0112a2aa79a99bff92261a92cecf
3
- size 438028807
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f624388b921afb0de61fe012a99b52069b9743f8f7266696d8657cfa9fa57d12
3
+ size 438035181
sentence_bert_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "max_seq_length": 128,
3
- "do_lower_case": false
4
- }
 
 
 
 
 
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1 +1 @@
1
- {"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base"}
 
1
+ {"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base", "tokenizer_class": "MPNetTokenizer"}