Thomas Müller
commited on
Commit
·
103dfe0
1
Parent(s):
a1ca4e6
Revert "Adjusts model card."
Browse filesThis reverts commit a1ca4e664ac89e2f89edcb400008512cdf1f48f6.
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
datasets:
|
5 |
-
- SNLI
|
6 |
-
- MNLI
|
7 |
pipeline_tag: sentence-similarity
|
8 |
tags:
|
9 |
-
- zero-shot-classification
|
10 |
- sentence-transformers
|
11 |
- feature-extraction
|
12 |
- sentence-similarity
|
@@ -15,12 +9,9 @@ tags:
|
|
15 |
|
16 |
# {MODEL_NAME}
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
It was trained on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/).
|
22 |
-
|
23 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space.
|
24 |
|
25 |
## Usage (Sentence-Transformers)
|
26 |
|
@@ -42,6 +33,7 @@ print(embeddings)
|
|
42 |
```
|
43 |
|
44 |
|
|
|
45 |
## Usage (HuggingFace Transformers)
|
46 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
47 |
|
@@ -77,3 +69,61 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
77 |
print("Sentence embeddings:")
|
78 |
print(sentence_embeddings)
|
79 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
9 |
|
10 |
# {MODEL_NAME}
|
11 |
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
+
<!--- Describe your model here -->
|
|
|
|
|
|
|
15 |
|
16 |
## Usage (Sentence-Transformers)
|
17 |
|
|
|
33 |
```
|
34 |
|
35 |
|
36 |
+
|
37 |
## Usage (HuggingFace Transformers)
|
38 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
|
|
|
69 |
print("Sentence embeddings:")
|
70 |
print(sentence_embeddings)
|
71 |
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Evaluation Results
|
76 |
+
|
77 |
+
<!--- Describe how your model was evaluated -->
|
78 |
+
|
79 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
+
|
81 |
+
|
82 |
+
## Training
|
83 |
+
The model was trained with the parameters:
|
84 |
+
|
85 |
+
**DataLoader**:
|
86 |
+
|
87 |
+
`zsde.training.NoDuplicatesDataLoader` of length 75000 with parameters:
|
88 |
+
```
|
89 |
+
{'batch_size': 16}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Loss**:
|
93 |
+
|
94 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
95 |
+
```
|
96 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
97 |
+
```
|
98 |
+
|
99 |
+
Parameters of the fit()-Method:
|
100 |
+
```
|
101 |
+
{
|
102 |
+
"callback": null,
|
103 |
+
"epochs": 1,
|
104 |
+
"evaluation_steps": 7500,
|
105 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
106 |
+
"max_grad_norm": 1,
|
107 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
108 |
+
"optimizer_params": {
|
109 |
+
"lr": 2e-05
|
110 |
+
},
|
111 |
+
"scheduler": "WarmupLinear",
|
112 |
+
"steps_per_epoch": 75000,
|
113 |
+
"warmup_steps": 7500,
|
114 |
+
"weight_decay": 0.01
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
## Full Model Architecture
|
120 |
+
```
|
121 |
+
SentenceTransformer(
|
122 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
## Citing & Authors
|
128 |
+
|
129 |
+
<!--- Describe where people can find more information -->
|