Thomas Müller commited on
Commit
103dfe0
·
1 Parent(s): a1ca4e6

Revert "Adjusts model card."

Browse files

This reverts commit a1ca4e664ac89e2f89edcb400008512cdf1f48f6.

Files changed (1) hide show
  1. README.md +61 -11
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- language:
3
- - en
4
- datasets:
5
- - SNLI
6
- - MNLI
7
  pipeline_tag: sentence-similarity
8
  tags:
9
- - zero-shot-classification
10
  - sentence-transformers
11
  - feature-extraction
12
  - sentence-similarity
@@ -15,12 +9,9 @@ tags:
15
 
16
  # {MODEL_NAME}
17
 
18
- A Siamese network model trained for zero-shot and few-shot text classification.
19
 
20
- The base model is [mpnet-base](https://huggingface.co/microsoft/mpnet-base).
21
- It was trained on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/).
22
-
23
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space.
24
 
25
  ## Usage (Sentence-Transformers)
26
 
@@ -42,6 +33,7 @@ print(embeddings)
42
  ```
43
 
44
 
 
45
  ## Usage (HuggingFace Transformers)
46
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
47
 
@@ -77,3 +69,61 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
77
  print("Sentence embeddings:")
78
  print(sentence_embeddings)
79
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
2
  pipeline_tag: sentence-similarity
3
  tags:
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
 
9
 
10
  # {MODEL_NAME}
11
 
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
+ <!--- Describe your model here -->
 
 
 
15
 
16
  ## Usage (Sentence-Transformers)
17
 
 
33
  ```
34
 
35
 
36
+
37
  ## Usage (HuggingFace Transformers)
38
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
 
 
69
  print("Sentence embeddings:")
70
  print(sentence_embeddings)
71
  ```
72
+
73
+
74
+
75
+ ## Evaluation Results
76
+
77
+ <!--- Describe how your model was evaluated -->
78
+
79
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
+
81
+
82
+ ## Training
83
+ The model was trained with the parameters:
84
+
85
+ **DataLoader**:
86
+
87
+ `zsde.training.NoDuplicatesDataLoader` of length 75000 with parameters:
88
+ ```
89
+ {'batch_size': 16}
90
+ ```
91
+
92
+ **Loss**:
93
+
94
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
95
+ ```
96
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
97
+ ```
98
+
99
+ Parameters of the fit()-Method:
100
+ ```
101
+ {
102
+ "callback": null,
103
+ "epochs": 1,
104
+ "evaluation_steps": 7500,
105
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
106
+ "max_grad_norm": 1,
107
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
108
+ "optimizer_params": {
109
+ "lr": 2e-05
110
+ },
111
+ "scheduler": "WarmupLinear",
112
+ "steps_per_epoch": 75000,
113
+ "warmup_steps": 7500,
114
+ "weight_decay": 0.01
115
+ }
116
+ ```
117
+
118
+
119
+ ## Full Model Architecture
120
+ ```
121
+ SentenceTransformer(
122
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
+ )
125
+ ```
126
+
127
+ ## Citing & Authors
128
+
129
+ <!--- Describe where people can find more information -->