Thomas Müller
commited on
Commit
·
a623882
1
Parent(s):
e63b555
Init commit.
Browse files- 1_Pooling/config.json +7 -0
- README.md +116 -20
- config.json +3 -14
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +2 -2
- sentence_bert_config.json +4 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -1
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,33 +1,129 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
- en
|
4 |
-
datasets:
|
5 |
-
- SNLI
|
6 |
-
- MNLI
|
7 |
tags:
|
8 |
-
-
|
|
|
|
|
|
|
9 |
---
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/).
|
16 |
|
17 |
-
Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
```python
|
20 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
import torch
|
22 |
-
import numpy as np
|
23 |
|
24 |
-
model = AutoModelForSequenceClassification.from_pretrained("symanto/mpnet-base-snli-mnli")
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained("symanto/mpnet-base-snli-mnli")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
---
|
9 |
|
10 |
+
# {MODEL_NAME}
|
11 |
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
+
<!--- Describe your model here -->
|
|
|
15 |
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
|
26 |
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
import torch
|
|
|
43 |
|
|
|
|
|
44 |
|
45 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
+
def mean_pooling(model_output, attention_mask):
|
47 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
+
|
51 |
+
|
52 |
+
# Sentences we want sentence embeddings for
|
53 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
+
|
55 |
+
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
+
|
59 |
+
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
+
|
62 |
+
# Compute token embeddings
|
63 |
+
with torch.no_grad():
|
64 |
+
model_output = model(**encoded_input)
|
65 |
+
|
66 |
+
# Perform pooling. In this case, max pooling.
|
67 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
+
|
69 |
+
print("Sentence embeddings:")
|
70 |
+
print(sentence_embeddings)
|
71 |
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Evaluation Results
|
76 |
+
|
77 |
+
<!--- Describe how your model was evaluated -->
|
78 |
+
|
79 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
+
|
81 |
+
|
82 |
+
## Training
|
83 |
+
The model was trained with the parameters:
|
84 |
+
|
85 |
+
**DataLoader**:
|
86 |
+
|
87 |
+
`zsde.training.NoDuplicatesDataLoader` of length 75000 with parameters:
|
88 |
+
```
|
89 |
+
{'batch_size': 16}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Loss**:
|
93 |
+
|
94 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
95 |
+
```
|
96 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
97 |
+
```
|
98 |
+
|
99 |
+
Parameters of the fit()-Method:
|
100 |
+
```
|
101 |
+
{
|
102 |
+
"callback": null,
|
103 |
+
"epochs": 1,
|
104 |
+
"evaluation_steps": 7500,
|
105 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
106 |
+
"max_grad_norm": 1,
|
107 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
108 |
+
"optimizer_params": {
|
109 |
+
"lr": 2e-05
|
110 |
+
},
|
111 |
+
"scheduler": "WarmupLinear",
|
112 |
+
"steps_per_epoch": 75000,
|
113 |
+
"warmup_steps": 7500,
|
114 |
+
"weight_decay": 0.01
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
## Full Model Architecture
|
120 |
+
```
|
121 |
+
SentenceTransformer(
|
122 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
## Citing & Authors
|
128 |
+
|
129 |
+
<!--- Describe where people can find more information -->
|
config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"bos_token_id": 0,
|
@@ -9,18 +9,8 @@
|
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
12 |
-
"id2label": {
|
13 |
-
"0": "ENTAILMENT",
|
14 |
-
"1": "NEUTRAL",
|
15 |
-
"2": "CONTRADICTION"
|
16 |
-
},
|
17 |
"initializer_range": 0.02,
|
18 |
"intermediate_size": 3072,
|
19 |
-
"label2id": {
|
20 |
-
"ENTAILMENT": 0,
|
21 |
-
"NEUTRAL": 1,
|
22 |
-
"CONTRADICTION": 2
|
23 |
-
},
|
24 |
"layer_norm_eps": 1e-05,
|
25 |
"max_position_embeddings": 514,
|
26 |
"model_type": "mpnet",
|
@@ -28,7 +18,6 @@
|
|
28 |
"num_hidden_layers": 12,
|
29 |
"pad_token_id": 1,
|
30 |
"relative_attention_num_buckets": 32,
|
31 |
-
"
|
32 |
-
"transformers_version": "4.11.1",
|
33 |
"vocab_size": 30527
|
34 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "microsoft/mpnet-base",
|
3 |
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"bos_token_id": 0,
|
|
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
|
|
|
|
|
|
|
|
|
|
12 |
"initializer_range": 0.02,
|
13 |
"intermediate_size": 3072,
|
|
|
|
|
|
|
|
|
|
|
14 |
"layer_norm_eps": 1e-05,
|
15 |
"max_position_embeddings": 514,
|
16 |
"model_type": "mpnet",
|
|
|
18 |
"num_hidden_layers": 12,
|
19 |
"pad_token_id": 1,
|
20 |
"relative_attention_num_buckets": 32,
|
21 |
+
"transformers_version": "4.6.0",
|
|
|
22 |
"vocab_size": 30527
|
23 |
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.0",
|
5 |
+
"pytorch": "1.7.0"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c83f1bfd69577fa7210ba31a94b019b6a3f0112a2aa79a99bff92261a92cecf
|
3 |
+
size 438028807
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base"
|
|
|
1 |
+
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base"}
|