sulaimank's picture
End of training
f6d0da3 verified
metadata
library_name: transformers
language:
  - lg
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Grain
metrics:
  - wer
model-index:
  - name: Whisper-small-lg-finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Grain
          type: Grain
        metrics:
          - name: Wer
            type: wer
            value: 0.003958390868084323

Whisper-small-lg-finetuned

This model is a fine-tuned version of openai/whisper-small on the Grain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0014
  • Wer: 0.0040
  • Cer: 0.0013

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.9276 1.0 1296 0.4841 1.1593 0.4773
0.2693 2.0 2592 0.0967 1.2498 0.5777
0.0668 3.0 3888 0.0300 1.1842 0.5634
0.0234 4.0 5184 0.0162 0.8390 0.3714
0.0117 5.0 6480 0.0108 0.8158 0.3744
0.0072 6.0 7776 0.0094 0.4896 0.2288
0.0051 7.0 9072 0.0086 0.2434 0.1106
0.005 8.0 10368 0.0090 0.2317 0.1230
0.0041 9.0 11664 0.0064 0.1364 0.0608
0.0029 10.0 12960 0.0064 0.0704 0.0215
0.0025 11.0 14256 0.0053 0.0756 0.0495
0.0018 12.0 15552 0.0059 0.0699 0.0313
0.0022 13.0 16848 0.0036 0.0238 0.0095
0.0018 14.0 18144 0.0053 0.0426 0.0195
0.0013 15.0 19440 0.0051 0.0203 0.0059
0.0017 16.0 20736 0.0028 0.0255 0.0124
0.0009 17.0 22032 0.0031 0.0254 0.0116
0.001 18.0 23328 0.0038 0.0105 0.0031
0.0014 19.0 24624 0.0022 0.0109 0.0034
0.001 20.0 25920 0.0015 0.0108 0.0037
0.0009 21.0 27216 0.0036 0.0170 0.0047
0.0005 22.0 28512 0.0014 0.0091 0.0032
0.0007 23.0 29808 0.0014 0.0101 0.0031
0.001 24.0 31104 0.0020 0.0108 0.0035
0.0004 25.0 32400 0.0015 0.0093 0.0030
0.0006 26.0 33696 0.0022 0.0174 0.0076
0.0007 27.0 34992 0.0020 0.0122 0.0079
0.0006 28.0 36288 0.0016 0.0081 0.0029
0.0004 29.0 37584 0.0020 0.0110 0.0031
0.0007 30.0 38880 0.0015 0.0106 0.0037
0.0005 31.0 40176 0.0025 0.0116 0.0032
0.0005 32.0 41472 0.0016 0.0097 0.0027
0.0003 33.0 42768 0.0010 0.0087 0.0034
0.0004 34.0 44064 0.0015 0.0116 0.0062
0.0002 35.0 45360 0.0010 0.0047 0.0020
0.0001 36.0 46656 0.0009 0.0052 0.0020
0.0006 37.0 47952 0.0027 0.0097 0.0031
0.0003 38.0 49248 0.0017 0.0054 0.0016
0.0002 39.0 50544 0.0013 0.0066 0.0023
0.0003 40.0 51840 0.0023 0.0072 0.0023
0.0002 41.0 53136 0.0012 0.0044 0.0018
0.0003 42.0 54432 0.0035 0.0075 0.0031
0.0003 43.0 55728 0.0035 0.0073 0.0024
0.0001 44.0 57024 0.0014 0.0047 0.0016
0.0 45.0 58320 0.0014 0.0040 0.0013

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1