--- library_name: transformers language: - lg license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Grain metrics: - wer model-index: - name: Whisper-small-lg-finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Grain type: Grain metrics: - name: Wer type: wer value: 0.003958390868084323 --- # Whisper-small-lg-finetuned This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Grain dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 - Wer: 0.0040 - Cer: 0.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.9276 | 1.0 | 1296 | 0.4841 | 1.1593 | 0.4773 | | 0.2693 | 2.0 | 2592 | 0.0967 | 1.2498 | 0.5777 | | 0.0668 | 3.0 | 3888 | 0.0300 | 1.1842 | 0.5634 | | 0.0234 | 4.0 | 5184 | 0.0162 | 0.8390 | 0.3714 | | 0.0117 | 5.0 | 6480 | 0.0108 | 0.8158 | 0.3744 | | 0.0072 | 6.0 | 7776 | 0.0094 | 0.4896 | 0.2288 | | 0.0051 | 7.0 | 9072 | 0.0086 | 0.2434 | 0.1106 | | 0.005 | 8.0 | 10368 | 0.0090 | 0.2317 | 0.1230 | | 0.0041 | 9.0 | 11664 | 0.0064 | 0.1364 | 0.0608 | | 0.0029 | 10.0 | 12960 | 0.0064 | 0.0704 | 0.0215 | | 0.0025 | 11.0 | 14256 | 0.0053 | 0.0756 | 0.0495 | | 0.0018 | 12.0 | 15552 | 0.0059 | 0.0699 | 0.0313 | | 0.0022 | 13.0 | 16848 | 0.0036 | 0.0238 | 0.0095 | | 0.0018 | 14.0 | 18144 | 0.0053 | 0.0426 | 0.0195 | | 0.0013 | 15.0 | 19440 | 0.0051 | 0.0203 | 0.0059 | | 0.0017 | 16.0 | 20736 | 0.0028 | 0.0255 | 0.0124 | | 0.0009 | 17.0 | 22032 | 0.0031 | 0.0254 | 0.0116 | | 0.001 | 18.0 | 23328 | 0.0038 | 0.0105 | 0.0031 | | 0.0014 | 19.0 | 24624 | 0.0022 | 0.0109 | 0.0034 | | 0.001 | 20.0 | 25920 | 0.0015 | 0.0108 | 0.0037 | | 0.0009 | 21.0 | 27216 | 0.0036 | 0.0170 | 0.0047 | | 0.0005 | 22.0 | 28512 | 0.0014 | 0.0091 | 0.0032 | | 0.0007 | 23.0 | 29808 | 0.0014 | 0.0101 | 0.0031 | | 0.001 | 24.0 | 31104 | 0.0020 | 0.0108 | 0.0035 | | 0.0004 | 25.0 | 32400 | 0.0015 | 0.0093 | 0.0030 | | 0.0006 | 26.0 | 33696 | 0.0022 | 0.0174 | 0.0076 | | 0.0007 | 27.0 | 34992 | 0.0020 | 0.0122 | 0.0079 | | 0.0006 | 28.0 | 36288 | 0.0016 | 0.0081 | 0.0029 | | 0.0004 | 29.0 | 37584 | 0.0020 | 0.0110 | 0.0031 | | 0.0007 | 30.0 | 38880 | 0.0015 | 0.0106 | 0.0037 | | 0.0005 | 31.0 | 40176 | 0.0025 | 0.0116 | 0.0032 | | 0.0005 | 32.0 | 41472 | 0.0016 | 0.0097 | 0.0027 | | 0.0003 | 33.0 | 42768 | 0.0010 | 0.0087 | 0.0034 | | 0.0004 | 34.0 | 44064 | 0.0015 | 0.0116 | 0.0062 | | 0.0002 | 35.0 | 45360 | 0.0010 | 0.0047 | 0.0020 | | 0.0001 | 36.0 | 46656 | 0.0009 | 0.0052 | 0.0020 | | 0.0006 | 37.0 | 47952 | 0.0027 | 0.0097 | 0.0031 | | 0.0003 | 38.0 | 49248 | 0.0017 | 0.0054 | 0.0016 | | 0.0002 | 39.0 | 50544 | 0.0013 | 0.0066 | 0.0023 | | 0.0003 | 40.0 | 51840 | 0.0023 | 0.0072 | 0.0023 | | 0.0002 | 41.0 | 53136 | 0.0012 | 0.0044 | 0.0018 | | 0.0003 | 42.0 | 54432 | 0.0035 | 0.0075 | 0.0031 | | 0.0003 | 43.0 | 55728 | 0.0035 | 0.0073 | 0.0024 | | 0.0001 | 44.0 | 57024 | 0.0014 | 0.0047 | 0.0016 | | 0.0 | 45.0 | 58320 | 0.0014 | 0.0040 | 0.0013 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1