sulaimank's picture
End of training
2cf1baa verified
metadata
library_name: transformers
language:
  - lg
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - Grain
metrics:
  - wer
model-index:
  - name: w
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Grain
          type: Grain
        metrics:
          - name: Wer
            type: wer
            value: 0.029878515924263983

w

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Grain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0469
  • Wer: 0.0299
  • Cer: 0.0077

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2995 1.0 1164 0.1521 0.1390 0.0283
0.1049 2.0 2328 0.0931 0.0946 0.0189
0.0719 3.0 3492 0.0861 0.0902 0.0183
0.0546 4.0 4656 0.0788 0.0704 0.0166
0.0447 5.0 5820 0.0609 0.0627 0.0135
0.0374 6.0 6984 0.0744 0.0618 0.0141
0.0338 7.0 8148 0.0673 0.0535 0.0137
0.029 8.0 9312 0.0770 0.0540 0.0128
0.0278 9.0 10476 0.0565 0.0482 0.0116
0.0227 10.0 11640 0.0516 0.0500 0.0115
0.0211 11.0 12804 0.0457 0.0392 0.0096
0.0207 12.0 13968 0.0527 0.0452 0.0098
0.0179 13.0 15132 0.0463 0.0370 0.0089
0.017 14.0 16296 0.0530 0.0452 0.0109
0.0167 15.0 17460 0.0447 0.0360 0.0091
0.0141 16.0 18624 0.0529 0.0434 0.0104
0.015 17.0 19788 0.0410 0.0387 0.0090
0.0141 18.0 20952 0.0480 0.0416 0.0102
0.0136 19.0 22116 0.0472 0.0368 0.0087
0.0125 20.0 23280 0.0428 0.0380 0.0091
0.0117 21.0 24444 0.0375 0.0328 0.0081
0.0113 22.0 25608 0.0392 0.0312 0.0083
0.0093 23.0 26772 0.0554 0.0394 0.0102
0.0111 24.0 27936 0.0624 0.0452 0.0108
0.0107 25.0 29100 0.0390 0.0346 0.0076
0.0082 26.0 30264 0.0505 0.0426 0.0101
0.0087 27.0 31428 0.0430 0.0320 0.0081
0.0086 28.0 32592 0.0541 0.0398 0.0101
0.0079 29.0 33756 0.0404 0.0304 0.0070
0.0084 30.0 34920 0.0416 0.0315 0.0075
0.0084 31.0 36084 0.0495 0.0366 0.0092
0.0075 32.0 37248 0.0469 0.0299 0.0077

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1