End of training
Browse files
README.md
CHANGED
@@ -1,199 +1,108 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- lg
|
5 |
+
license: mit
|
6 |
+
base_model: facebook/w2v-bert-2.0
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- Grain
|
11 |
+
metrics:
|
12 |
+
- wer
|
13 |
+
model-index:
|
14 |
+
- name: w
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Grain
|
21 |
+
type: Grain
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.029878515924263983
|
26 |
---
|
27 |
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# w
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Grain dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.0469
|
36 |
+
- Wer: 0.0299
|
37 |
+
- Cer: 0.0077
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0001
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 100
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
69 |
+
| 0.2995 | 1.0 | 1164 | 0.1521 | 0.1390 | 0.0283 |
|
70 |
+
| 0.1049 | 2.0 | 2328 | 0.0931 | 0.0946 | 0.0189 |
|
71 |
+
| 0.0719 | 3.0 | 3492 | 0.0861 | 0.0902 | 0.0183 |
|
72 |
+
| 0.0546 | 4.0 | 4656 | 0.0788 | 0.0704 | 0.0166 |
|
73 |
+
| 0.0447 | 5.0 | 5820 | 0.0609 | 0.0627 | 0.0135 |
|
74 |
+
| 0.0374 | 6.0 | 6984 | 0.0744 | 0.0618 | 0.0141 |
|
75 |
+
| 0.0338 | 7.0 | 8148 | 0.0673 | 0.0535 | 0.0137 |
|
76 |
+
| 0.029 | 8.0 | 9312 | 0.0770 | 0.0540 | 0.0128 |
|
77 |
+
| 0.0278 | 9.0 | 10476 | 0.0565 | 0.0482 | 0.0116 |
|
78 |
+
| 0.0227 | 10.0 | 11640 | 0.0516 | 0.0500 | 0.0115 |
|
79 |
+
| 0.0211 | 11.0 | 12804 | 0.0457 | 0.0392 | 0.0096 |
|
80 |
+
| 0.0207 | 12.0 | 13968 | 0.0527 | 0.0452 | 0.0098 |
|
81 |
+
| 0.0179 | 13.0 | 15132 | 0.0463 | 0.0370 | 0.0089 |
|
82 |
+
| 0.017 | 14.0 | 16296 | 0.0530 | 0.0452 | 0.0109 |
|
83 |
+
| 0.0167 | 15.0 | 17460 | 0.0447 | 0.0360 | 0.0091 |
|
84 |
+
| 0.0141 | 16.0 | 18624 | 0.0529 | 0.0434 | 0.0104 |
|
85 |
+
| 0.015 | 17.0 | 19788 | 0.0410 | 0.0387 | 0.0090 |
|
86 |
+
| 0.0141 | 18.0 | 20952 | 0.0480 | 0.0416 | 0.0102 |
|
87 |
+
| 0.0136 | 19.0 | 22116 | 0.0472 | 0.0368 | 0.0087 |
|
88 |
+
| 0.0125 | 20.0 | 23280 | 0.0428 | 0.0380 | 0.0091 |
|
89 |
+
| 0.0117 | 21.0 | 24444 | 0.0375 | 0.0328 | 0.0081 |
|
90 |
+
| 0.0113 | 22.0 | 25608 | 0.0392 | 0.0312 | 0.0083 |
|
91 |
+
| 0.0093 | 23.0 | 26772 | 0.0554 | 0.0394 | 0.0102 |
|
92 |
+
| 0.0111 | 24.0 | 27936 | 0.0624 | 0.0452 | 0.0108 |
|
93 |
+
| 0.0107 | 25.0 | 29100 | 0.0390 | 0.0346 | 0.0076 |
|
94 |
+
| 0.0082 | 26.0 | 30264 | 0.0505 | 0.0426 | 0.0101 |
|
95 |
+
| 0.0087 | 27.0 | 31428 | 0.0430 | 0.0320 | 0.0081 |
|
96 |
+
| 0.0086 | 28.0 | 32592 | 0.0541 | 0.0398 | 0.0101 |
|
97 |
+
| 0.0079 | 29.0 | 33756 | 0.0404 | 0.0304 | 0.0070 |
|
98 |
+
| 0.0084 | 30.0 | 34920 | 0.0416 | 0.0315 | 0.0075 |
|
99 |
+
| 0.0084 | 31.0 | 36084 | 0.0495 | 0.0366 | 0.0092 |
|
100 |
+
| 0.0075 | 32.0 | 37248 | 0.0469 | 0.0299 | 0.0077 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.45.2
|
106 |
+
- Pytorch 2.1.0+cu118
|
107 |
+
- Datasets 3.0.1
|
108 |
+
- Tokenizers 0.20.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|