|
--- |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: mistral_fine_tuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None) |
|
# mistral_fine_tuned |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7791 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_steps: 0.03 |
|
- training_steps: 250 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.9281 | 0.04 | 10 | 2.3786 | |
|
| 2.1861 | 0.08 | 20 | 1.9991 | |
|
| 1.5698 | 0.12 | 30 | 1.9460 | |
|
| 1.6891 | 0.16 | 40 | 1.8457 | |
|
| 1.6863 | 0.2 | 50 | 1.8188 | |
|
| 1.4201 | 0.24 | 60 | 1.7638 | |
|
| 1.6936 | 0.28 | 70 | 1.7349 | |
|
| 1.5696 | 0.32 | 80 | 1.6898 | |
|
| 1.6084 | 0.36 | 90 | 1.7269 | |
|
| 1.5357 | 0.4 | 100 | 1.7332 | |
|
| 1.6684 | 0.44 | 110 | 1.6728 | |
|
| 1.2216 | 0.48 | 120 | 1.6563 | |
|
| 1.5176 | 0.52 | 130 | 1.6376 | |
|
| 1.5256 | 0.56 | 140 | 1.6653 | |
|
| 1.3695 | 0.6 | 150 | 1.6317 | |
|
| 1.3191 | 0.64 | 160 | 1.6261 | |
|
| 1.4091 | 0.68 | 170 | 1.6145 | |
|
| 1.5681 | 0.72 | 180 | 1.6007 | |
|
| 1.7259 | 0.76 | 190 | 1.6076 | |
|
| 1.5123 | 0.8 | 200 | 1.6836 | |
|
| 1.387 | 0.84 | 210 | 1.7292 | |
|
| 1.5837 | 0.88 | 220 | 1.7177 | |
|
| 1.6955 | 0.92 | 230 | 1.7232 | |
|
| 1.7862 | 0.96 | 240 | 1.7714 | |
|
| 1.79 | 1.0 | 250 | 1.7791 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |