mistral_fine_tuned / README.md
sri-lasya's picture
sri-lasya/gst-taxing-llm
0eea9e3 verified
|
raw
history blame
2.77 kB
---
base_model: mistralai/Mistral-7B-v0.3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: mistral_fine_tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None)
# mistral_fine_tuned
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 250
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9281 | 0.04 | 10 | 2.3786 |
| 2.1861 | 0.08 | 20 | 1.9991 |
| 1.5698 | 0.12 | 30 | 1.9460 |
| 1.6891 | 0.16 | 40 | 1.8457 |
| 1.6863 | 0.2 | 50 | 1.8188 |
| 1.4201 | 0.24 | 60 | 1.7638 |
| 1.6936 | 0.28 | 70 | 1.7349 |
| 1.5696 | 0.32 | 80 | 1.6898 |
| 1.6084 | 0.36 | 90 | 1.7269 |
| 1.5357 | 0.4 | 100 | 1.7332 |
| 1.6684 | 0.44 | 110 | 1.6728 |
| 1.2216 | 0.48 | 120 | 1.6563 |
| 1.5176 | 0.52 | 130 | 1.6376 |
| 1.5256 | 0.56 | 140 | 1.6653 |
| 1.3695 | 0.6 | 150 | 1.6317 |
| 1.3191 | 0.64 | 160 | 1.6261 |
| 1.4091 | 0.68 | 170 | 1.6145 |
| 1.5681 | 0.72 | 180 | 1.6007 |
| 1.7259 | 0.76 | 190 | 1.6076 |
| 1.5123 | 0.8 | 200 | 1.6836 |
| 1.387 | 0.84 | 210 | 1.7292 |
| 1.5837 | 0.88 | 220 | 1.7177 |
| 1.6955 | 0.92 | 230 | 1.7232 |
| 1.7862 | 0.96 | 240 | 1.7714 |
| 1.79 | 1.0 | 250 | 1.7791 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1