File size: 2,767 Bytes
e1a34cf
1fe5e1b
e1a34cf
1fe5e1b
e1a34cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eea9e3
e1a34cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eea9e3
 
e1a34cf
 
 
 
 
0eea9e3
e1a34cf
 
 
1fe5e1b
 
0eea9e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a34cf
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: mistralai/Mistral-7B-v0.3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: mistral_fine_tuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](None)
# mistral_fine_tuned

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7791

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 250

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9281        | 0.04  | 10   | 2.3786          |
| 2.1861        | 0.08  | 20   | 1.9991          |
| 1.5698        | 0.12  | 30   | 1.9460          |
| 1.6891        | 0.16  | 40   | 1.8457          |
| 1.6863        | 0.2   | 50   | 1.8188          |
| 1.4201        | 0.24  | 60   | 1.7638          |
| 1.6936        | 0.28  | 70   | 1.7349          |
| 1.5696        | 0.32  | 80   | 1.6898          |
| 1.6084        | 0.36  | 90   | 1.7269          |
| 1.5357        | 0.4   | 100  | 1.7332          |
| 1.6684        | 0.44  | 110  | 1.6728          |
| 1.2216        | 0.48  | 120  | 1.6563          |
| 1.5176        | 0.52  | 130  | 1.6376          |
| 1.5256        | 0.56  | 140  | 1.6653          |
| 1.3695        | 0.6   | 150  | 1.6317          |
| 1.3191        | 0.64  | 160  | 1.6261          |
| 1.4091        | 0.68  | 170  | 1.6145          |
| 1.5681        | 0.72  | 180  | 1.6007          |
| 1.7259        | 0.76  | 190  | 1.6076          |
| 1.5123        | 0.8   | 200  | 1.6836          |
| 1.387         | 0.84  | 210  | 1.7292          |
| 1.5837        | 0.88  | 220  | 1.7177          |
| 1.6955        | 0.92  | 230  | 1.7232          |
| 1.7862        | 0.96  | 240  | 1.7714          |
| 1.79          | 1.0   | 250  | 1.7791          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1