File size: 3,964 Bytes
74e0c1a
8f70fcd
 
 
 
 
 
89f50c6
8f70fcd
 
 
18a4b45
 
 
 
8f70fcd
18a4b45
 
 
8f70fcd
 
 
89f50c6
8f70fcd
 
89f50c6
 
 
 
 
 
 
8f70fcd
 
 
 
89f50c6
8f70fcd
1a2b255
 
 
8f70fcd
 
89f50c6
8f70fcd
 
 
 
 
 
 
89f50c6
18a4b45
8f70fcd
89f50c6
8f70fcd
 
 
 
 
 
 
 
1a2b255
8f70fcd
 
 
 
 
 
1a2b255
8f70fcd
 
 
 
 
1a2b255
8f70fcd
 
 
89f50c6
8f70fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f50c6
8f70fcd
 
 
 
 
89f50c6
8f70fcd
89f50c6
8f70fcd
 
 
89f50c6
 
8f70fcd
 
 
89f50c6
 
 
8f70fcd
 
89f50c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import spaces
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Load the diffusion pipeline without immediately moving it to GPU
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, use_safetensors=True)

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    pipe.to(device)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 
    
    return image

# Examples for the Gradio UI
examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

# CSS styling for the Gradio UI
css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

# Determine the power device (GPU or CPU) for display purposes
power_device = "GPU" if torch.cuda.is_available() else "CPU"

# Gradio UI setup
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=25,
                )
        
        gr.Examples(
            examples=examples,
            inputs=[prompt]
        )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()