Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import random
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
-
# Set device to GPU if available, else CPU
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
if torch.cuda.is_available():
|
@@ -20,27 +19,28 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
|
26 |
-
generator = torch.Generator(
|
27 |
|
28 |
image = pipe(
|
29 |
-
prompt=prompt,
|
30 |
-
negative_prompt=negative_prompt,
|
31 |
-
guidance_scale=guidance_scale,
|
32 |
-
num_inference_steps=num_inference_steps,
|
33 |
-
width=width,
|
34 |
-
height=height,
|
35 |
-
generator=generator
|
36 |
).images[0]
|
37 |
|
38 |
return image
|
39 |
|
40 |
examples = [
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
]
|
45 |
|
46 |
css="""
|
@@ -50,9 +50,13 @@ css="""
|
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
with gr.Blocks(css=css) as demo:
|
|
|
56 |
with gr.Column(elem_id="col-container"):
|
57 |
gr.Markdown(f"""
|
58 |
# Text-to-Image Gradio Template
|
@@ -60,23 +64,26 @@ with gr.Blocks(css=css) as demo:
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
63 |
-
|
|
|
64 |
label="Prompt",
|
65 |
show_label=False,
|
66 |
max_lines=1,
|
67 |
placeholder="Enter your prompt",
|
68 |
container=False,
|
69 |
)
|
|
|
70 |
run_button = gr.Button("Run", scale=0)
|
71 |
|
72 |
result = gr.Image(label="Result", show_label=False)
|
73 |
|
74 |
with gr.Accordion("Advanced Settings", open=False):
|
75 |
-
|
|
|
76 |
label="Negative prompt",
|
77 |
max_lines=1,
|
78 |
placeholder="Enter a negative prompt",
|
79 |
-
visible=
|
80 |
)
|
81 |
|
82 |
seed = gr.Slider(
|
@@ -90,6 +97,7 @@ with gr.Blocks(css=css) as demo:
|
|
90 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
91 |
|
92 |
with gr.Row():
|
|
|
93 |
width = gr.Slider(
|
94 |
label="Width",
|
95 |
minimum=256,
|
@@ -107,33 +115,32 @@ with gr.Blocks(css=css) as demo:
|
|
107 |
)
|
108 |
|
109 |
with gr.Row():
|
|
|
110 |
guidance_scale = gr.Slider(
|
111 |
label="Guidance scale",
|
112 |
minimum=0.0,
|
113 |
maximum=10.0,
|
114 |
step=0.1,
|
115 |
-
value=
|
116 |
)
|
117 |
|
118 |
num_inference_steps = gr.Slider(
|
119 |
label="Number of inference steps",
|
120 |
minimum=1,
|
121 |
-
maximum=
|
122 |
step=1,
|
123 |
-
value=
|
124 |
)
|
125 |
|
126 |
gr.Examples(
|
127 |
-
examples=examples,
|
128 |
-
inputs=[prompt]
|
129 |
-
outputs=[result],
|
130 |
-
fn=infer
|
131 |
)
|
132 |
|
133 |
run_button.click(
|
134 |
-
fn=infer,
|
135 |
-
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
136 |
-
outputs=[result]
|
137 |
)
|
138 |
|
139 |
-
demo.queue().launch(
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
if torch.cuda.is_available():
|
|
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
+
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
|
26 |
+
generator = torch.Generator().manual_seed(seed)
|
27 |
|
28 |
image = pipe(
|
29 |
+
prompt = prompt,
|
30 |
+
negative_prompt = negative_prompt,
|
31 |
+
guidance_scale = guidance_scale,
|
32 |
+
num_inference_steps = num_inference_steps,
|
33 |
+
width = width,
|
34 |
+
height = height,
|
35 |
+
generator = generator
|
36 |
).images[0]
|
37 |
|
38 |
return image
|
39 |
|
40 |
examples = [
|
41 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
+
"An astronaut riding a green horse",
|
43 |
+
"A delicious ceviche cheesecake slice",
|
44 |
]
|
45 |
|
46 |
css="""
|
|
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
+
if torch.cuda.is_available():
|
54 |
+
power_device = "GPU"
|
55 |
+
else:
|
56 |
+
power_device = "CPU"
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
+
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
# Text-to-Image Gradio Template
|
|
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
67 |
+
|
68 |
+
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
71 |
max_lines=1,
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
+
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
+
|
82 |
+
negative_prompt = gr.Text(
|
83 |
label="Negative prompt",
|
84 |
max_lines=1,
|
85 |
placeholder="Enter a negative prompt",
|
86 |
+
visible=False,
|
87 |
)
|
88 |
|
89 |
seed = gr.Slider(
|
|
|
97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
|
99 |
with gr.Row():
|
100 |
+
|
101 |
width = gr.Slider(
|
102 |
label="Width",
|
103 |
minimum=256,
|
|
|
115 |
)
|
116 |
|
117 |
with gr.Row():
|
118 |
+
|
119 |
guidance_scale = gr.Slider(
|
120 |
label="Guidance scale",
|
121 |
minimum=0.0,
|
122 |
maximum=10.0,
|
123 |
step=0.1,
|
124 |
+
value=0.0,
|
125 |
)
|
126 |
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
+
maximum=12,
|
131 |
step=1,
|
132 |
+
value=2,
|
133 |
)
|
134 |
|
135 |
gr.Examples(
|
136 |
+
examples = examples,
|
137 |
+
inputs = [prompt]
|
|
|
|
|
138 |
)
|
139 |
|
140 |
run_button.click(
|
141 |
+
fn = infer,
|
142 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
+
outputs = [result]
|
144 |
)
|
145 |
|
146 |
+
demo.queue().launch()
|