xinglilu commited on
Commit
89f50c6
·
verified ·
1 Parent(s): 987a660

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -26
app.py CHANGED
@@ -4,9 +4,11 @@ import random
4
  from diffusers import DiffusionPipeline
5
  import torch
6
 
 
 
7
 
8
- if torch.cuda.is_available():
9
- torch.cuda.max_memory_allocated(device=device)
10
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
11
  pipe.enable_xformers_memory_efficient_attention()
12
  pipe = pipe.to(device)
@@ -14,34 +16,37 @@ else:
14
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
15
  pipe = pipe.to(device)
16
 
 
17
  MAX_SEED = np.iinfo(np.int32).max
18
  MAX_IMAGE_SIZE = 1024
19
 
 
20
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
21
-
22
  if randomize_seed:
23
  seed = random.randint(0, MAX_SEED)
24
 
25
- generator = torch.Generator().manual_seed(seed)
26
 
27
  image = pipe(
28
- prompt = prompt,
29
- negative_prompt = negative_prompt,
30
- guidance_scale = guidance_scale,
31
- num_inference_steps = num_inference_steps,
32
- width = width,
33
- height = height,
34
- generator = generator
35
  ).images[0]
36
 
37
  return image
38
 
 
39
  examples = [
40
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
41
  "An astronaut riding a green horse",
42
  "A delicious ceviche cheesecake slice",
43
  ]
44
 
 
45
  css="""
46
  #col-container {
47
  margin: 0 auto;
@@ -49,9 +54,11 @@ css="""
49
  }
50
  """
51
 
 
 
52
 
 
53
  with gr.Blocks(css=css) as demo:
54
-
55
  with gr.Column(elem_id="col-container"):
56
  gr.Markdown(f"""
57
  # Text-to-Image Gradio Template
@@ -59,7 +66,6 @@ with gr.Blocks(css=css) as demo:
59
  """)
60
 
61
  with gr.Row():
62
-
63
  prompt = gr.Text(
64
  label="Prompt",
65
  show_label=False,
@@ -73,12 +79,11 @@ with gr.Blocks(css=css) as demo:
73
  result = gr.Image(label="Result", show_label=False)
74
 
75
  with gr.Accordion("Advanced Settings", open=False):
76
-
77
  negative_prompt = gr.Text(
78
  label="Negative prompt",
79
  max_lines=1,
80
  placeholder="Enter a negative prompt",
81
- visible=False,
82
  )
83
 
84
  seed = gr.Slider(
@@ -92,7 +97,6 @@ with gr.Blocks(css=css) as demo:
92
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
93
 
94
  with gr.Row():
95
-
96
  width = gr.Slider(
97
  label="Width",
98
  minimum=256,
@@ -110,32 +114,31 @@ with gr.Blocks(css=css) as demo:
110
  )
111
 
112
  with gr.Row():
113
-
114
  guidance_scale = gr.Slider(
115
  label="Guidance scale",
116
  minimum=0.0,
117
  maximum=10.0,
118
  step=0.1,
119
- value=0.0,
120
  )
121
 
122
  num_inference_steps = gr.Slider(
123
  label="Number of inference steps",
124
  minimum=1,
125
- maximum=12,
126
  step=1,
127
- value=2,
128
  )
129
 
130
  gr.Examples(
131
- examples = examples,
132
- inputs = [prompt]
133
  )
134
 
135
  run_button.click(
136
- fn = infer,
137
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
138
- outputs = [result]
139
  )
140
 
141
- demo.launch(share=True)
 
4
  from diffusers import DiffusionPipeline
5
  import torch
6
 
7
+ # Check for GPU availability and set the device accordingly
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
+ # Load the diffusion pipeline based on the availability of GPU
11
+ if device == "cuda":
12
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
13
  pipe.enable_xformers_memory_efficient_attention()
14
  pipe = pipe.to(device)
 
16
  pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
17
  pipe = pipe.to(device)
18
 
19
+ # Constants
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
+ # Inference function
24
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
 
28
+ generator = torch.Generator(device=device).manual_seed(seed)
29
 
30
  image = pipe(
31
+ prompt=prompt,
32
+ negative_prompt=negative_prompt,
33
+ guidance_scale=guidance_scale,
34
+ num_inference_steps=num_inference_steps,
35
+ width=width,
36
+ height=height,
37
+ generator=generator
38
  ).images[0]
39
 
40
  return image
41
 
42
+ # Examples for the Gradio UI
43
  examples = [
44
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
45
  "An astronaut riding a green horse",
46
  "A delicious ceviche cheesecake slice",
47
  ]
48
 
49
+ # CSS styling for the Gradio UI
50
  css="""
51
  #col-container {
52
  margin: 0 auto;
 
54
  }
55
  """
56
 
57
+ # Determine the power device (GPU or CPU) for display purposes
58
+ power_device = "GPU" if device == "cuda" else "CPU"
59
 
60
+ # Gradio UI setup
61
  with gr.Blocks(css=css) as demo:
 
62
  with gr.Column(elem_id="col-container"):
63
  gr.Markdown(f"""
64
  # Text-to-Image Gradio Template
 
66
  """)
67
 
68
  with gr.Row():
 
69
  prompt = gr.Text(
70
  label="Prompt",
71
  show_label=False,
 
79
  result = gr.Image(label="Result", show_label=False)
80
 
81
  with gr.Accordion("Advanced Settings", open=False):
 
82
  negative_prompt = gr.Text(
83
  label="Negative prompt",
84
  max_lines=1,
85
  placeholder="Enter a negative prompt",
86
+ visible=True,
87
  )
88
 
89
  seed = gr.Slider(
 
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
 
99
  with gr.Row():
 
100
  width = gr.Slider(
101
  label="Width",
102
  minimum=256,
 
114
  )
115
 
116
  with gr.Row():
 
117
  guidance_scale = gr.Slider(
118
  label="Guidance scale",
119
  minimum=0.0,
120
  maximum=10.0,
121
  step=0.1,
122
+ value=7.5,
123
  )
124
 
125
  num_inference_steps = gr.Slider(
126
  label="Number of inference steps",
127
  minimum=1,
128
+ maximum=50,
129
  step=1,
130
+ value=25,
131
  )
132
 
133
  gr.Examples(
134
+ examples=examples,
135
+ inputs=[prompt]
136
  )
137
 
138
  run_button.click(
139
+ fn=infer,
140
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
141
+ outputs=[result]
142
  )
143
 
144
+ demo.queue().launch()