Spaces:
Sleeping
Sleeping
# Motion VQ-Trans | |
Pytorch implementation of paper "Generating Human Motion from Textual Descriptions with High Quality Discrete Representation" | |
[[Notebook Demo]](https://colab.research.google.com/drive/1tAHlmcpKcjg_zZrqKku7AfpqdVAIFrF8?usp=sharing) | |
![teaser](img/Teaser.png) | |
If our project is helpful for your research, please consider citing : (todo) | |
``` | |
@inproceedings{shen2020ransac, | |
title={RANSAC-Flow: generic two-stage image alignment}, | |
author={Shen, Xi and Darmon, Fran{\c{c}}ois and Efros, Alexei A and Aubry, Mathieu}, | |
booktitle={16th European Conference on Computer Vision} | |
year={2020} | |
} | |
``` | |
## Table of Content | |
* [1. Visual Results](#1-visual-results) | |
* [2. Installation](#2-installation) | |
* [3. Quick Start](#3-quick-start) | |
* [4. Train](#4-train) | |
* [5. Evaluation](#5-evaluation) | |
* [6. Motion Render](#6-motion-render) | |
* [7. Acknowledgement](#7-acknowledgement) | |
* [8. ChangLog](#8-changlog) | |
## 1. Visual Results (More results can be found in our project page (todo)) | |
![visualization](img/ALLvis.png) | |
## 2. Installation | |
### 2.1. Environment | |
<!-- Our model can be learnt in a **single GPU GeForce GTX 1080Ti** (12G). | |
Install Pytorch adapted to your CUDA version : | |
* [Pytorch 1.2.0](https://pytorch.org/get-started/previous-versions/#linux-and-windows-1) | |
* [Torchvision 0.4.0](https://pytorch.org/get-started/previous-versions/#linux-and-windows-1) | |
Other dependencies (tqdm, visdom, pandas, kornia, opencv-python) : | |
``` Bash | |
bash requirement.sh | |
``` --> | |
Our model can be learnt in a **single GPU V100-32G** | |
```bash | |
conda env create -f environment.yml | |
conda activate VQTrans | |
``` | |
The code was tested on Python 3.8 and PyTorch 1.8.1. | |
### 2.2. Dependencies | |
```bash | |
bash dataset/prepare/download_glove.sh | |
``` | |
### 2.3. Datasets | |
We are using two 3D human motion-language dataset: HumanML3D and KIT-ML. For both datasets, you could find the details as well as download link [[here]](https://github.com/EricGuo5513/HumanML3D). | |
Take HumanML3D for an example, the file directory should look like this: | |
``` | |
./dataset/HumanML3D/ | |
βββ new_joint_vecs/ | |
βββ texts/ | |
βββ Mean.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D) | |
βββ Std.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D) | |
βββ train.txt | |
βββ val.txt | |
βββ test.txt | |
βββ train_val.txt | |
βββall.txt | |
``` | |
### 2.4. Motion & text feature extractors: | |
We use the same extractors provided by [t2m](https://github.com/EricGuo5513/text-to-motion) to evaluate our generated motions. Please download the extractors. | |
```bash | |
bash dataset/prepare/download_extractor.sh | |
``` | |
### 2.5. Pre-trained models | |
The pretrained model files will be stored in the 'pretrained' folder: | |
```bash | |
bash dataset/prepare/download_model.sh | |
``` | |
<!-- Quick download : | |
``` Bash | |
cd model/pretrained | |
bash download_model.sh | |
``` | |
For more details of the pre-trained models, see [here](https://github.com/XiSHEN0220/RANSAC-Flow/blob/master/model/pretrained) --> | |
### 2.6. Render motion (optional) | |
If you want to render the generated motion, you need to install: | |
```bash | |
sudo sh dataset/prepare/download_smpl.sh | |
conda install -c menpo osmesa | |
conda install h5py | |
conda install -c conda-forge shapely pyrender trimesh mapbox_earcut | |
``` | |
## 3. Quick Start | |
A quick start guide of how to use our code is available in [demo.ipynb](https://colab.research.google.com/drive/1tAHlmcpKcjg_zZrqKku7AfpqdVAIFrF8?usp=sharing) | |
<p align="center"> | |
<img src="img/demo.png" width="400px" alt="demo"> | |
</p> | |
## 4. Train | |
Note that, for kit dataset, just need to set '--dataname kit'. | |
### 4.1. VQ-VAE | |
The results are saved in the folder output_vqfinal. | |
<details> | |
<summary> | |
VQ training | |
</summary> | |
```bash | |
python3 train_vq.py \ | |
--batch-size 256 \ | |
--lr 2e-4 \ | |
--total-iter 300000 \ | |
--lr-scheduler 200000 \ | |
--nb-code 512 \ | |
--down-t 2 \ | |
--depth 3 \ | |
--dilation-growth-rate 3 \ | |
--out-dir output \ | |
--dataname t2m \ | |
--vq-act relu \ | |
--quantizer ema_reset \ | |
--loss-vel 0.5 \ | |
--recons-loss l1_smooth \ | |
--exp-name VQVAE | |
``` | |
</details> | |
### 4.2. Motion-Transformer | |
The results are saved in the folder output_transformer. | |
<details> | |
<summary> | |
MoTrans training | |
</summary> | |
```bash | |
python3 train_t2m_trans.py \ | |
--exp-name VQTransformer \ | |
--batch-size 128 \ | |
--num-layers 9 \ | |
--embed-dim-gpt 1024 \ | |
--nb-code 512 \ | |
--n-head-gpt 16 \ | |
--block-size 51 \ | |
--ff-rate 4 \ | |
--drop-out-rate 0.1 \ | |
--resume-pth output/VQVAE/net_last.pth \ | |
--vq-name VQVAE \ | |
--out-dir output \ | |
--total-iter 300000 \ | |
--lr-scheduler 150000 \ | |
--lr 0.0001 \ | |
--dataname t2m \ | |
--down-t 2 \ | |
--depth 3 \ | |
--quantizer ema_reset \ | |
--eval-iter 10000 \ | |
--pkeep 0.5 \ | |
--dilation-growth-rate 3 \ | |
--vq-act relu | |
``` | |
</details> | |
## 5. Evaluation | |
### 5.1. VQ-VAE | |
<details> | |
<summary> | |
VQ eval | |
</summary> | |
```bash | |
python3 VQ_eval.py \ | |
--batch-size 256 \ | |
--lr 2e-4 \ | |
--total-iter 300000 \ | |
--lr-scheduler 200000 \ | |
--nb-code 512 \ | |
--down-t 2 \ | |
--depth 3 \ | |
--dilation-growth-rate 3 \ | |
--out-dir output \ | |
--dataname t2m \ | |
--vq-act relu \ | |
--quantizer ema_reset \ | |
--loss-vel 0.5 \ | |
--recons-loss l1_smooth \ | |
--exp-name TEST_VQVAE \ | |
--resume-pth output/VQVAE/net_last.pth | |
``` | |
</details> | |
### 5.2. Motion-Transformer | |
<details> | |
<summary> | |
MoTrans eval | |
</summary> | |
```bash | |
python3 GPT_eval_multi.py \ | |
--exp-name TEST_VQTransformer \ | |
--batch-size 128 \ | |
--num-layers 9 \ | |
--embed-dim-gpt 1024 \ | |
--nb-code 512 \ | |
--n-head-gpt 16 \ | |
--block-size 51 \ | |
--ff-rate 4 \ | |
--drop-out-rate 0.1 \ | |
--resume-pth output/VQVAE/net_last.pth \ | |
--vq-name VQVAE \ | |
--out-dir output \ | |
--total-iter 300000 \ | |
--lr-scheduler 150000 \ | |
--lr 0.0001 \ | |
--dataname t2m \ | |
--down-t 2 \ | |
--depth 3 \ | |
--quantizer ema_reset \ | |
--eval-iter 10000 \ | |
--pkeep 0.5 \ | |
--dilation-growth-rate 3 \ | |
--vq-act relu \ | |
--resume-gpt output/VQTransformer/net_best_fid.pth | |
``` | |
</details> | |
## 6. Motion Render | |
<details> | |
<summary> | |
Motion Render | |
</summary> | |
You should input the npy folder address and the motion names. Here is an example: | |
```bash | |
python3 render_final.py --filedir output/TEST_VQTransformer/ --motion-list 000019 005485 | |
``` | |
</details> | |
### 7. Acknowledgement | |
We appreciate helps from : | |
* Public code like [text-to-motion](https://github.com/EricGuo5513/text-to-motion), [TM2T](https://github.com/EricGuo5513/TM2T) etc. | |
### 8. ChangLog | |
<!-- # VQGPT | |
``` | |
# VQ during training OT | |
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_251_cnn_all.py \ | |
--batch-size 128 \ | |
--exp-name xxxxxx \ | |
--lr 2e-4 \ | |
--total-iter 300000 \ | |
--lr-scheduler 200000 \ | |
--nb-code 512 \ | |
--down-t 2 \ | |
--depth 5 \ | |
--out-dir /apdcephfs_cq2/share_1290939/jirozhang/VQCNN_HUMAN/ \ | |
--dataname t2m \ | |
--vq-act relu \ | |
--quantizer ot \ | |
--ot-temperature 1 \ | |
--ot-eps 0.5 \ | |
--commit 0.001 \ | |
``` | |
``` | |
# VQ251 training baseline | |
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_251_cnn_all.py \ | |
--batch-size 128 \ | |
--exp-name VQ263_300K_512cb_down4_t2m_ema_relu_test \ | |
--lr 2e-4 \ | |
--total-iter 300000 \ | |
--lr-scheduler 200000 \ | |
--nb-code 512 \ | |
--down-t 2 \ | |
--depth 5 \ | |
--out-dir /apdcephfs_cq2/share_1290939/jirozhang/VQCNN_HUMAN/ \ | |
--dataname t2m \ | |
--vq-act relu \ | |
--quantizer ema \ | |
``` | |
```bash | |
# gpt training + noise | |
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_gpt_cnn_noise.py \ | |
--exp-name GPT_VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64_fid_mask1_08 \ | |
--batch-size 128 \ | |
--num-layers 4 \ | |
--block-size 51 \ | |
--n-head-gpt 8 \ | |
--ff-rate 4 \ | |
--drop-out-rate 0.1 \ | |
--resume-pth output_vqhuman/VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64/net_best_fid.pth \ | |
--vq-name VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64_fid_mask1_08 \ | |
--total-iter 300000 \ | |
--lr-scheduler 150000 \ | |
--lr 0.0001 \ | |
--if-auxloss \ | |
--dataname t2m \ | |
--down-t 2 \ | |
--depth 5 \ | |
--quantizer ema \ | |
--eval-iter 5000 \ | |
--pkeep 0.8 | |
``` | |
### Visualize VQ (Arch Taming) in HTML | |
* Generate motion. This will save generated motions in `./visual_results/vel05_taming_l1s` | |
``` | |
python vis.py --dataname t2m --resume-pth /apdcephfs_cq2/share_1290939/jirozhang/VQ_t2m_bailando_relu_NoNorm_dilate3_vel05_taming_l1s/net_last.pth --visual-name vel05_taming_l1s --vis-gt --nb-vis 20 | |
``` | |
* Make a Webpage. Go to visual_html.py, modify the name, then run : | |
``` | |
python visual_html.py | |
``` --> | |