Spaces:
Sleeping
Sleeping
First commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- VQ-Trans/.gitignore +147 -0
- VQ-Trans/GPT_eval_multi.py +121 -0
- VQ-Trans/README.md +400 -0
- VQ-Trans/VQ_eval.py +95 -0
- VQ-Trans/ViT-B-32.pt +3 -0
- VQ-Trans/dataset/dataset_TM_eval.py +217 -0
- VQ-Trans/dataset/dataset_TM_train.py +161 -0
- VQ-Trans/dataset/dataset_VQ.py +109 -0
- VQ-Trans/dataset/dataset_tokenize.py +117 -0
- VQ-Trans/dataset/prepare/download_extractor.sh +15 -0
- VQ-Trans/dataset/prepare/download_glove.sh +9 -0
- VQ-Trans/dataset/prepare/download_model.sh +12 -0
- VQ-Trans/dataset/prepare/download_smpl.sh +13 -0
- VQ-Trans/environment.yml +121 -0
- VQ-Trans/models/encdec.py +67 -0
- VQ-Trans/models/evaluator_wrapper.py +92 -0
- VQ-Trans/models/modules.py +109 -0
- VQ-Trans/models/pos_encoding.py +43 -0
- VQ-Trans/models/quantize_cnn.py +415 -0
- VQ-Trans/models/resnet.py +82 -0
- VQ-Trans/models/rotation2xyz.py +92 -0
- VQ-Trans/models/smpl.py +97 -0
- VQ-Trans/models/t2m_trans.py +211 -0
- VQ-Trans/models/vqvae.py +118 -0
- VQ-Trans/options/get_eval_option.py +83 -0
- VQ-Trans/options/option_transformer.py +68 -0
- VQ-Trans/options/option_vq.py +61 -0
- VQ-Trans/render_final.py +194 -0
- VQ-Trans/train_t2m_trans.py +191 -0
- VQ-Trans/train_vq.py +171 -0
- VQ-Trans/utils/config.py +17 -0
- VQ-Trans/utils/eval_trans.py +580 -0
- VQ-Trans/utils/losses.py +30 -0
- VQ-Trans/utils/motion_process.py +59 -0
- VQ-Trans/utils/paramUtil.py +63 -0
- VQ-Trans/utils/quaternion.py +423 -0
- VQ-Trans/utils/rotation_conversions.py +532 -0
- VQ-Trans/utils/skeleton.py +199 -0
- VQ-Trans/utils/utils_model.py +66 -0
- VQ-Trans/utils/word_vectorizer.py +99 -0
- VQ-Trans/visualization/plot_3d_global.py +129 -0
- VQ-Trans/visualize/joints2smpl/smpl_models/SMPL_downsample_index.pkl +3 -0
- VQ-Trans/visualize/joints2smpl/smpl_models/gmm_08.pkl +3 -0
- VQ-Trans/visualize/joints2smpl/smpl_models/neutral_smpl_mean_params.h5 +3 -0
- VQ-Trans/visualize/joints2smpl/smpl_models/smplx_parts_segm.pkl +3 -0
- VQ-Trans/visualize/joints2smpl/src/config.py +40 -0
- VQ-Trans/visualize/joints2smpl/src/customloss.py +222 -0
- VQ-Trans/visualize/joints2smpl/src/prior.py +230 -0
- VQ-Trans/visualize/joints2smpl/src/smplify.py +279 -0
- VQ-Trans/visualize/render_mesh.py +33 -0
VQ-Trans/.gitignore
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
.vscode
|
132 |
+
dataset/dataset_TM_train_cb1_temp.py
|
133 |
+
train_gpt_cnn_temp.py
|
134 |
+
train_gpt_cnn_mask.py
|
135 |
+
start.sh
|
136 |
+
start_eval.sh
|
137 |
+
config.json
|
138 |
+
output_GPT_Final
|
139 |
+
output_vqfinal
|
140 |
+
output_transformer
|
141 |
+
glove
|
142 |
+
checkpoints
|
143 |
+
dataset/HumanML3D
|
144 |
+
dataset/KIT-ML
|
145 |
+
output
|
146 |
+
matrix_multi.py
|
147 |
+
body_models
|
VQ-Trans/GPT_eval_multi.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from torch.utils.tensorboard import SummaryWriter
|
5 |
+
import json
|
6 |
+
import clip
|
7 |
+
|
8 |
+
import options.option_transformer as option_trans
|
9 |
+
import models.vqvae as vqvae
|
10 |
+
import utils.utils_model as utils_model
|
11 |
+
import utils.eval_trans as eval_trans
|
12 |
+
from dataset import dataset_TM_eval
|
13 |
+
import models.t2m_trans as trans
|
14 |
+
from options.get_eval_option import get_opt
|
15 |
+
from models.evaluator_wrapper import EvaluatorModelWrapper
|
16 |
+
import warnings
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
|
19 |
+
##### ---- Exp dirs ---- #####
|
20 |
+
args = option_trans.get_args_parser()
|
21 |
+
torch.manual_seed(args.seed)
|
22 |
+
|
23 |
+
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
|
24 |
+
os.makedirs(args.out_dir, exist_ok = True)
|
25 |
+
|
26 |
+
##### ---- Logger ---- #####
|
27 |
+
logger = utils_model.get_logger(args.out_dir)
|
28 |
+
writer = SummaryWriter(args.out_dir)
|
29 |
+
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
|
30 |
+
|
31 |
+
from utils.word_vectorizer import WordVectorizer
|
32 |
+
w_vectorizer = WordVectorizer('./glove', 'our_vab')
|
33 |
+
val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer)
|
34 |
+
|
35 |
+
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
|
36 |
+
|
37 |
+
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
|
38 |
+
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
|
39 |
+
|
40 |
+
##### ---- Network ---- #####
|
41 |
+
|
42 |
+
## load clip model and datasets
|
43 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training
|
44 |
+
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
|
45 |
+
clip_model.eval()
|
46 |
+
for p in clip_model.parameters():
|
47 |
+
p.requires_grad = False
|
48 |
+
|
49 |
+
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
|
50 |
+
args.nb_code,
|
51 |
+
args.code_dim,
|
52 |
+
args.output_emb_width,
|
53 |
+
args.down_t,
|
54 |
+
args.stride_t,
|
55 |
+
args.width,
|
56 |
+
args.depth,
|
57 |
+
args.dilation_growth_rate)
|
58 |
+
|
59 |
+
|
60 |
+
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
|
61 |
+
embed_dim=args.embed_dim_gpt,
|
62 |
+
clip_dim=args.clip_dim,
|
63 |
+
block_size=args.block_size,
|
64 |
+
num_layers=args.num_layers,
|
65 |
+
n_head=args.n_head_gpt,
|
66 |
+
drop_out_rate=args.drop_out_rate,
|
67 |
+
fc_rate=args.ff_rate)
|
68 |
+
|
69 |
+
|
70 |
+
print ('loading checkpoint from {}'.format(args.resume_pth))
|
71 |
+
ckpt = torch.load(args.resume_pth, map_location='cpu')
|
72 |
+
net.load_state_dict(ckpt['net'], strict=True)
|
73 |
+
net.eval()
|
74 |
+
net.cuda()
|
75 |
+
|
76 |
+
if args.resume_trans is not None:
|
77 |
+
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
|
78 |
+
ckpt = torch.load(args.resume_trans, map_location='cpu')
|
79 |
+
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
|
80 |
+
trans_encoder.train()
|
81 |
+
trans_encoder.cuda()
|
82 |
+
|
83 |
+
|
84 |
+
fid = []
|
85 |
+
div = []
|
86 |
+
top1 = []
|
87 |
+
top2 = []
|
88 |
+
top3 = []
|
89 |
+
matching = []
|
90 |
+
multi = []
|
91 |
+
repeat_time = 20
|
92 |
+
|
93 |
+
|
94 |
+
for i in range(repeat_time):
|
95 |
+
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, writer, logger = eval_trans.evaluation_transformer_test(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, best_multi=0, clip_model=clip_model, eval_wrapper=eval_wrapper, draw=False, savegif=False, save=False, savenpy=(i==0))
|
96 |
+
fid.append(best_fid)
|
97 |
+
div.append(best_div)
|
98 |
+
top1.append(best_top1)
|
99 |
+
top2.append(best_top2)
|
100 |
+
top3.append(best_top3)
|
101 |
+
matching.append(best_matching)
|
102 |
+
multi.append(best_multi)
|
103 |
+
|
104 |
+
print('final result:')
|
105 |
+
print('fid: ', sum(fid)/repeat_time)
|
106 |
+
print('div: ', sum(div)/repeat_time)
|
107 |
+
print('top1: ', sum(top1)/repeat_time)
|
108 |
+
print('top2: ', sum(top2)/repeat_time)
|
109 |
+
print('top3: ', sum(top3)/repeat_time)
|
110 |
+
print('matching: ', sum(matching)/repeat_time)
|
111 |
+
print('multi: ', sum(multi)/repeat_time)
|
112 |
+
|
113 |
+
fid = np.array(fid)
|
114 |
+
div = np.array(div)
|
115 |
+
top1 = np.array(top1)
|
116 |
+
top2 = np.array(top2)
|
117 |
+
top3 = np.array(top3)
|
118 |
+
matching = np.array(matching)
|
119 |
+
multi = np.array(multi)
|
120 |
+
msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}, Multi. {np.mean(multi):.3f}, conf. {np.std(multi)*1.96/np.sqrt(repeat_time):.3f}"
|
121 |
+
logger.info(msg_final)
|
VQ-Trans/README.md
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Motion VQ-Trans
|
2 |
+
Pytorch implementation of paper "Generating Human Motion from Textual Descriptions with High Quality Discrete Representation"
|
3 |
+
|
4 |
+
|
5 |
+
[[Notebook Demo]](https://colab.research.google.com/drive/1tAHlmcpKcjg_zZrqKku7AfpqdVAIFrF8?usp=sharing)
|
6 |
+
|
7 |
+
|
8 |
+
![teaser](img/Teaser.png)
|
9 |
+
|
10 |
+
If our project is helpful for your research, please consider citing : (todo)
|
11 |
+
```
|
12 |
+
@inproceedings{shen2020ransac,
|
13 |
+
title={RANSAC-Flow: generic two-stage image alignment},
|
14 |
+
author={Shen, Xi and Darmon, Fran{\c{c}}ois and Efros, Alexei A and Aubry, Mathieu},
|
15 |
+
booktitle={16th European Conference on Computer Vision}
|
16 |
+
year={2020}
|
17 |
+
}
|
18 |
+
```
|
19 |
+
|
20 |
+
|
21 |
+
## Table of Content
|
22 |
+
* [1. Visual Results](#1-visual-results)
|
23 |
+
* [2. Installation](#2-installation)
|
24 |
+
* [3. Quick Start](#3-quick-start)
|
25 |
+
* [4. Train](#4-train)
|
26 |
+
* [5. Evaluation](#5-evaluation)
|
27 |
+
* [6. Motion Render](#6-motion-render)
|
28 |
+
* [7. Acknowledgement](#7-acknowledgement)
|
29 |
+
* [8. ChangLog](#8-changlog)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
## 1. Visual Results (More results can be found in our project page (todo))
|
35 |
+
|
36 |
+
![visualization](img/ALLvis.png)
|
37 |
+
|
38 |
+
|
39 |
+
## 2. Installation
|
40 |
+
|
41 |
+
### 2.1. Environment
|
42 |
+
|
43 |
+
<!-- Our model can be learnt in a **single GPU GeForce GTX 1080Ti** (12G).
|
44 |
+
|
45 |
+
Install Pytorch adapted to your CUDA version :
|
46 |
+
|
47 |
+
* [Pytorch 1.2.0](https://pytorch.org/get-started/previous-versions/#linux-and-windows-1)
|
48 |
+
* [Torchvision 0.4.0](https://pytorch.org/get-started/previous-versions/#linux-and-windows-1)
|
49 |
+
|
50 |
+
Other dependencies (tqdm, visdom, pandas, kornia, opencv-python) :
|
51 |
+
``` Bash
|
52 |
+
bash requirement.sh
|
53 |
+
``` -->
|
54 |
+
|
55 |
+
Our model can be learnt in a **single GPU V100-32G**
|
56 |
+
|
57 |
+
```bash
|
58 |
+
conda env create -f environment.yml
|
59 |
+
conda activate VQTrans
|
60 |
+
```
|
61 |
+
|
62 |
+
The code was tested on Python 3.8 and PyTorch 1.8.1.
|
63 |
+
|
64 |
+
|
65 |
+
### 2.2. Dependencies
|
66 |
+
|
67 |
+
```bash
|
68 |
+
bash dataset/prepare/download_glove.sh
|
69 |
+
```
|
70 |
+
|
71 |
+
|
72 |
+
### 2.3. Datasets
|
73 |
+
|
74 |
+
|
75 |
+
We are using two 3D human motion-language dataset: HumanML3D and KIT-ML. For both datasets, you could find the details as well as download link [[here]](https://github.com/EricGuo5513/HumanML3D).
|
76 |
+
|
77 |
+
Take HumanML3D for an example, the file directory should look like this:
|
78 |
+
```
|
79 |
+
./dataset/HumanML3D/
|
80 |
+
├── new_joint_vecs/
|
81 |
+
├── texts/
|
82 |
+
├── Mean.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D)
|
83 |
+
├── Std.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D)
|
84 |
+
├── train.txt
|
85 |
+
├── val.txt
|
86 |
+
├── test.txt
|
87 |
+
├── train_val.txt
|
88 |
+
└──all.txt
|
89 |
+
```
|
90 |
+
|
91 |
+
|
92 |
+
### 2.4. Motion & text feature extractors:
|
93 |
+
|
94 |
+
We use the same extractors provided by [t2m](https://github.com/EricGuo5513/text-to-motion) to evaluate our generated motions. Please download the extractors.
|
95 |
+
|
96 |
+
```bash
|
97 |
+
bash dataset/prepare/download_extractor.sh
|
98 |
+
```
|
99 |
+
|
100 |
+
### 2.5. Pre-trained models
|
101 |
+
|
102 |
+
The pretrained model files will be stored in the 'pretrained' folder:
|
103 |
+
```bash
|
104 |
+
bash dataset/prepare/download_model.sh
|
105 |
+
```
|
106 |
+
|
107 |
+
<!-- Quick download :
|
108 |
+
|
109 |
+
``` Bash
|
110 |
+
cd model/pretrained
|
111 |
+
bash download_model.sh
|
112 |
+
```
|
113 |
+
|
114 |
+
For more details of the pre-trained models, see [here](https://github.com/XiSHEN0220/RANSAC-Flow/blob/master/model/pretrained) -->
|
115 |
+
|
116 |
+
### 2.6. Render motion (optional)
|
117 |
+
|
118 |
+
If you want to render the generated motion, you need to install:
|
119 |
+
|
120 |
+
```bash
|
121 |
+
sudo sh dataset/prepare/download_smpl.sh
|
122 |
+
conda install -c menpo osmesa
|
123 |
+
conda install h5py
|
124 |
+
conda install -c conda-forge shapely pyrender trimesh mapbox_earcut
|
125 |
+
```
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
## 3. Quick Start
|
130 |
+
|
131 |
+
A quick start guide of how to use our code is available in [demo.ipynb](https://colab.research.google.com/drive/1tAHlmcpKcjg_zZrqKku7AfpqdVAIFrF8?usp=sharing)
|
132 |
+
|
133 |
+
<p align="center">
|
134 |
+
<img src="img/demo.png" width="400px" alt="demo">
|
135 |
+
</p>
|
136 |
+
|
137 |
+
|
138 |
+
## 4. Train
|
139 |
+
|
140 |
+
Note that, for kit dataset, just need to set '--dataname kit'.
|
141 |
+
|
142 |
+
### 4.1. VQ-VAE
|
143 |
+
|
144 |
+
The results are saved in the folder output_vqfinal.
|
145 |
+
|
146 |
+
<details>
|
147 |
+
<summary>
|
148 |
+
VQ training
|
149 |
+
</summary>
|
150 |
+
|
151 |
+
```bash
|
152 |
+
python3 train_vq.py \
|
153 |
+
--batch-size 256 \
|
154 |
+
--lr 2e-4 \
|
155 |
+
--total-iter 300000 \
|
156 |
+
--lr-scheduler 200000 \
|
157 |
+
--nb-code 512 \
|
158 |
+
--down-t 2 \
|
159 |
+
--depth 3 \
|
160 |
+
--dilation-growth-rate 3 \
|
161 |
+
--out-dir output \
|
162 |
+
--dataname t2m \
|
163 |
+
--vq-act relu \
|
164 |
+
--quantizer ema_reset \
|
165 |
+
--loss-vel 0.5 \
|
166 |
+
--recons-loss l1_smooth \
|
167 |
+
--exp-name VQVAE
|
168 |
+
```
|
169 |
+
|
170 |
+
</details>
|
171 |
+
|
172 |
+
### 4.2. Motion-Transformer
|
173 |
+
|
174 |
+
The results are saved in the folder output_transformer.
|
175 |
+
|
176 |
+
<details>
|
177 |
+
<summary>
|
178 |
+
MoTrans training
|
179 |
+
</summary>
|
180 |
+
|
181 |
+
```bash
|
182 |
+
python3 train_t2m_trans.py \
|
183 |
+
--exp-name VQTransformer \
|
184 |
+
--batch-size 128 \
|
185 |
+
--num-layers 9 \
|
186 |
+
--embed-dim-gpt 1024 \
|
187 |
+
--nb-code 512 \
|
188 |
+
--n-head-gpt 16 \
|
189 |
+
--block-size 51 \
|
190 |
+
--ff-rate 4 \
|
191 |
+
--drop-out-rate 0.1 \
|
192 |
+
--resume-pth output/VQVAE/net_last.pth \
|
193 |
+
--vq-name VQVAE \
|
194 |
+
--out-dir output \
|
195 |
+
--total-iter 300000 \
|
196 |
+
--lr-scheduler 150000 \
|
197 |
+
--lr 0.0001 \
|
198 |
+
--dataname t2m \
|
199 |
+
--down-t 2 \
|
200 |
+
--depth 3 \
|
201 |
+
--quantizer ema_reset \
|
202 |
+
--eval-iter 10000 \
|
203 |
+
--pkeep 0.5 \
|
204 |
+
--dilation-growth-rate 3 \
|
205 |
+
--vq-act relu
|
206 |
+
```
|
207 |
+
|
208 |
+
</details>
|
209 |
+
|
210 |
+
## 5. Evaluation
|
211 |
+
|
212 |
+
### 5.1. VQ-VAE
|
213 |
+
<details>
|
214 |
+
<summary>
|
215 |
+
VQ eval
|
216 |
+
</summary>
|
217 |
+
|
218 |
+
```bash
|
219 |
+
python3 VQ_eval.py \
|
220 |
+
--batch-size 256 \
|
221 |
+
--lr 2e-4 \
|
222 |
+
--total-iter 300000 \
|
223 |
+
--lr-scheduler 200000 \
|
224 |
+
--nb-code 512 \
|
225 |
+
--down-t 2 \
|
226 |
+
--depth 3 \
|
227 |
+
--dilation-growth-rate 3 \
|
228 |
+
--out-dir output \
|
229 |
+
--dataname t2m \
|
230 |
+
--vq-act relu \
|
231 |
+
--quantizer ema_reset \
|
232 |
+
--loss-vel 0.5 \
|
233 |
+
--recons-loss l1_smooth \
|
234 |
+
--exp-name TEST_VQVAE \
|
235 |
+
--resume-pth output/VQVAE/net_last.pth
|
236 |
+
```
|
237 |
+
|
238 |
+
</details>
|
239 |
+
|
240 |
+
### 5.2. Motion-Transformer
|
241 |
+
|
242 |
+
<details>
|
243 |
+
<summary>
|
244 |
+
MoTrans eval
|
245 |
+
</summary>
|
246 |
+
|
247 |
+
```bash
|
248 |
+
python3 GPT_eval_multi.py \
|
249 |
+
--exp-name TEST_VQTransformer \
|
250 |
+
--batch-size 128 \
|
251 |
+
--num-layers 9 \
|
252 |
+
--embed-dim-gpt 1024 \
|
253 |
+
--nb-code 512 \
|
254 |
+
--n-head-gpt 16 \
|
255 |
+
--block-size 51 \
|
256 |
+
--ff-rate 4 \
|
257 |
+
--drop-out-rate 0.1 \
|
258 |
+
--resume-pth output/VQVAE/net_last.pth \
|
259 |
+
--vq-name VQVAE \
|
260 |
+
--out-dir output \
|
261 |
+
--total-iter 300000 \
|
262 |
+
--lr-scheduler 150000 \
|
263 |
+
--lr 0.0001 \
|
264 |
+
--dataname t2m \
|
265 |
+
--down-t 2 \
|
266 |
+
--depth 3 \
|
267 |
+
--quantizer ema_reset \
|
268 |
+
--eval-iter 10000 \
|
269 |
+
--pkeep 0.5 \
|
270 |
+
--dilation-growth-rate 3 \
|
271 |
+
--vq-act relu \
|
272 |
+
--resume-gpt output/VQTransformer/net_best_fid.pth
|
273 |
+
```
|
274 |
+
|
275 |
+
</details>
|
276 |
+
|
277 |
+
|
278 |
+
## 6. Motion Render
|
279 |
+
|
280 |
+
<details>
|
281 |
+
<summary>
|
282 |
+
Motion Render
|
283 |
+
</summary>
|
284 |
+
|
285 |
+
You should input the npy folder address and the motion names. Here is an example:
|
286 |
+
|
287 |
+
```bash
|
288 |
+
python3 render_final.py --filedir output/TEST_VQTransformer/ --motion-list 000019 005485
|
289 |
+
```
|
290 |
+
|
291 |
+
</details>
|
292 |
+
|
293 |
+
### 7. Acknowledgement
|
294 |
+
|
295 |
+
We appreciate helps from :
|
296 |
+
|
297 |
+
* Public code like [text-to-motion](https://github.com/EricGuo5513/text-to-motion), [TM2T](https://github.com/EricGuo5513/TM2T) etc.
|
298 |
+
|
299 |
+
### 8. ChangLog
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
<!-- # VQGPT
|
324 |
+
|
325 |
+
```
|
326 |
+
# VQ during training OT
|
327 |
+
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_251_cnn_all.py \
|
328 |
+
--batch-size 128 \
|
329 |
+
--exp-name xxxxxx \
|
330 |
+
--lr 2e-4 \
|
331 |
+
--total-iter 300000 \
|
332 |
+
--lr-scheduler 200000 \
|
333 |
+
--nb-code 512 \
|
334 |
+
--down-t 2 \
|
335 |
+
--depth 5 \
|
336 |
+
--out-dir /apdcephfs_cq2/share_1290939/jirozhang/VQCNN_HUMAN/ \
|
337 |
+
--dataname t2m \
|
338 |
+
--vq-act relu \
|
339 |
+
--quantizer ot \
|
340 |
+
--ot-temperature 1 \
|
341 |
+
--ot-eps 0.5 \
|
342 |
+
--commit 0.001 \
|
343 |
+
```
|
344 |
+
|
345 |
+
```
|
346 |
+
# VQ251 training baseline
|
347 |
+
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_251_cnn_all.py \
|
348 |
+
--batch-size 128 \
|
349 |
+
--exp-name VQ263_300K_512cb_down4_t2m_ema_relu_test \
|
350 |
+
--lr 2e-4 \
|
351 |
+
--total-iter 300000 \
|
352 |
+
--lr-scheduler 200000 \
|
353 |
+
--nb-code 512 \
|
354 |
+
--down-t 2 \
|
355 |
+
--depth 5 \
|
356 |
+
--out-dir /apdcephfs_cq2/share_1290939/jirozhang/VQCNN_HUMAN/ \
|
357 |
+
--dataname t2m \
|
358 |
+
--vq-act relu \
|
359 |
+
--quantizer ema \
|
360 |
+
```
|
361 |
+
|
362 |
+
|
363 |
+
```bash
|
364 |
+
# gpt training + noise
|
365 |
+
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_gpt_cnn_noise.py \
|
366 |
+
--exp-name GPT_VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64_fid_mask1_08 \
|
367 |
+
--batch-size 128 \
|
368 |
+
--num-layers 4 \
|
369 |
+
--block-size 51 \
|
370 |
+
--n-head-gpt 8 \
|
371 |
+
--ff-rate 4 \
|
372 |
+
--drop-out-rate 0.1 \
|
373 |
+
--resume-pth output_vqhuman/VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64/net_best_fid.pth \
|
374 |
+
--vq-name VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64_fid_mask1_08 \
|
375 |
+
--total-iter 300000 \
|
376 |
+
--lr-scheduler 150000 \
|
377 |
+
--lr 0.0001 \
|
378 |
+
--if-auxloss \
|
379 |
+
--dataname t2m \
|
380 |
+
--down-t 2 \
|
381 |
+
--depth 5 \
|
382 |
+
--quantizer ema \
|
383 |
+
--eval-iter 5000 \
|
384 |
+
--pkeep 0.8
|
385 |
+
```
|
386 |
+
|
387 |
+
|
388 |
+
### Visualize VQ (Arch Taming) in HTML
|
389 |
+
|
390 |
+
* Generate motion. This will save generated motions in `./visual_results/vel05_taming_l1s`
|
391 |
+
|
392 |
+
```
|
393 |
+
python vis.py --dataname t2m --resume-pth /apdcephfs_cq2/share_1290939/jirozhang/VQ_t2m_bailando_relu_NoNorm_dilate3_vel05_taming_l1s/net_last.pth --visual-name vel05_taming_l1s --vis-gt --nb-vis 20
|
394 |
+
```
|
395 |
+
|
396 |
+
* Make a Webpage. Go to visual_html.py, modify the name, then run :
|
397 |
+
|
398 |
+
```
|
399 |
+
python visual_html.py
|
400 |
+
``` -->
|
VQ-Trans/VQ_eval.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils.tensorboard import SummaryWriter
|
6 |
+
import numpy as np
|
7 |
+
import models.vqvae as vqvae
|
8 |
+
import options.option_vq as option_vq
|
9 |
+
import utils.utils_model as utils_model
|
10 |
+
from dataset import dataset_TM_eval
|
11 |
+
import utils.eval_trans as eval_trans
|
12 |
+
from options.get_eval_option import get_opt
|
13 |
+
from models.evaluator_wrapper import EvaluatorModelWrapper
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore')
|
16 |
+
import numpy as np
|
17 |
+
##### ---- Exp dirs ---- #####
|
18 |
+
args = option_vq.get_args_parser()
|
19 |
+
torch.manual_seed(args.seed)
|
20 |
+
|
21 |
+
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
|
22 |
+
os.makedirs(args.out_dir, exist_ok = True)
|
23 |
+
|
24 |
+
##### ---- Logger ---- #####
|
25 |
+
logger = utils_model.get_logger(args.out_dir)
|
26 |
+
writer = SummaryWriter(args.out_dir)
|
27 |
+
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
|
28 |
+
|
29 |
+
|
30 |
+
from utils.word_vectorizer import WordVectorizer
|
31 |
+
w_vectorizer = WordVectorizer('./glove', 'our_vab')
|
32 |
+
|
33 |
+
|
34 |
+
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
|
35 |
+
|
36 |
+
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
|
37 |
+
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
|
38 |
+
|
39 |
+
|
40 |
+
##### ---- Dataloader ---- #####
|
41 |
+
args.nb_joints = 21 if args.dataname == 'kit' else 22
|
42 |
+
|
43 |
+
val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer, unit_length=2**args.down_t)
|
44 |
+
|
45 |
+
##### ---- Network ---- #####
|
46 |
+
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
|
47 |
+
args.nb_code,
|
48 |
+
args.code_dim,
|
49 |
+
args.output_emb_width,
|
50 |
+
args.down_t,
|
51 |
+
args.stride_t,
|
52 |
+
args.width,
|
53 |
+
args.depth,
|
54 |
+
args.dilation_growth_rate,
|
55 |
+
args.vq_act,
|
56 |
+
args.vq_norm)
|
57 |
+
|
58 |
+
if args.resume_pth :
|
59 |
+
logger.info('loading checkpoint from {}'.format(args.resume_pth))
|
60 |
+
ckpt = torch.load(args.resume_pth, map_location='cpu')
|
61 |
+
net.load_state_dict(ckpt['net'], strict=True)
|
62 |
+
net.train()
|
63 |
+
net.cuda()
|
64 |
+
|
65 |
+
fid = []
|
66 |
+
div = []
|
67 |
+
top1 = []
|
68 |
+
top2 = []
|
69 |
+
top3 = []
|
70 |
+
matching = []
|
71 |
+
repeat_time = 20
|
72 |
+
for i in range(repeat_time):
|
73 |
+
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper, draw=False, save=False, savenpy=(i==0))
|
74 |
+
fid.append(best_fid)
|
75 |
+
div.append(best_div)
|
76 |
+
top1.append(best_top1)
|
77 |
+
top2.append(best_top2)
|
78 |
+
top3.append(best_top3)
|
79 |
+
matching.append(best_matching)
|
80 |
+
print('final result:')
|
81 |
+
print('fid: ', sum(fid)/repeat_time)
|
82 |
+
print('div: ', sum(div)/repeat_time)
|
83 |
+
print('top1: ', sum(top1)/repeat_time)
|
84 |
+
print('top2: ', sum(top2)/repeat_time)
|
85 |
+
print('top3: ', sum(top3)/repeat_time)
|
86 |
+
print('matching: ', sum(matching)/repeat_time)
|
87 |
+
|
88 |
+
fid = np.array(fid)
|
89 |
+
div = np.array(div)
|
90 |
+
top1 = np.array(top1)
|
91 |
+
top2 = np.array(top2)
|
92 |
+
top3 = np.array(top3)
|
93 |
+
matching = np.array(matching)
|
94 |
+
msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}"
|
95 |
+
logger.info(msg_final)
|
VQ-Trans/ViT-B-32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af
|
3 |
+
size 353976522
|
VQ-Trans/dataset/dataset_TM_eval.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
import numpy as np
|
4 |
+
from os.path import join as pjoin
|
5 |
+
import random
|
6 |
+
import codecs as cs
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import utils.paramUtil as paramUtil
|
10 |
+
from torch.utils.data._utils.collate import default_collate
|
11 |
+
|
12 |
+
|
13 |
+
def collate_fn(batch):
|
14 |
+
batch.sort(key=lambda x: x[3], reverse=True)
|
15 |
+
return default_collate(batch)
|
16 |
+
|
17 |
+
|
18 |
+
'''For use of training text-2-motion generative model'''
|
19 |
+
class Text2MotionDataset(data.Dataset):
|
20 |
+
def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4):
|
21 |
+
|
22 |
+
self.max_length = 20
|
23 |
+
self.pointer = 0
|
24 |
+
self.dataset_name = dataset_name
|
25 |
+
self.is_test = is_test
|
26 |
+
self.max_text_len = max_text_len
|
27 |
+
self.unit_length = unit_length
|
28 |
+
self.w_vectorizer = w_vectorizer
|
29 |
+
if dataset_name == 't2m':
|
30 |
+
self.data_root = './dataset/HumanML3D'
|
31 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
32 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
33 |
+
self.joints_num = 22
|
34 |
+
radius = 4
|
35 |
+
fps = 20
|
36 |
+
self.max_motion_length = 196
|
37 |
+
dim_pose = 263
|
38 |
+
kinematic_chain = paramUtil.t2m_kinematic_chain
|
39 |
+
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
|
40 |
+
elif dataset_name == 'kit':
|
41 |
+
self.data_root = './dataset/KIT-ML'
|
42 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
43 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
44 |
+
self.joints_num = 21
|
45 |
+
radius = 240 * 8
|
46 |
+
fps = 12.5
|
47 |
+
dim_pose = 251
|
48 |
+
self.max_motion_length = 196
|
49 |
+
kinematic_chain = paramUtil.kit_kinematic_chain
|
50 |
+
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
|
51 |
+
|
52 |
+
mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
|
53 |
+
std = np.load(pjoin(self.meta_dir, 'std.npy'))
|
54 |
+
|
55 |
+
if is_test:
|
56 |
+
split_file = pjoin(self.data_root, 'test.txt')
|
57 |
+
else:
|
58 |
+
split_file = pjoin(self.data_root, 'val.txt')
|
59 |
+
|
60 |
+
min_motion_len = 40 if self.dataset_name =='t2m' else 24
|
61 |
+
# min_motion_len = 64
|
62 |
+
|
63 |
+
joints_num = self.joints_num
|
64 |
+
|
65 |
+
data_dict = {}
|
66 |
+
id_list = []
|
67 |
+
with cs.open(split_file, 'r') as f:
|
68 |
+
for line in f.readlines():
|
69 |
+
id_list.append(line.strip())
|
70 |
+
|
71 |
+
new_name_list = []
|
72 |
+
length_list = []
|
73 |
+
for name in tqdm(id_list):
|
74 |
+
try:
|
75 |
+
motion = np.load(pjoin(self.motion_dir, name + '.npy'))
|
76 |
+
if (len(motion)) < min_motion_len or (len(motion) >= 200):
|
77 |
+
continue
|
78 |
+
text_data = []
|
79 |
+
flag = False
|
80 |
+
with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
|
81 |
+
for line in f.readlines():
|
82 |
+
text_dict = {}
|
83 |
+
line_split = line.strip().split('#')
|
84 |
+
caption = line_split[0]
|
85 |
+
tokens = line_split[1].split(' ')
|
86 |
+
f_tag = float(line_split[2])
|
87 |
+
to_tag = float(line_split[3])
|
88 |
+
f_tag = 0.0 if np.isnan(f_tag) else f_tag
|
89 |
+
to_tag = 0.0 if np.isnan(to_tag) else to_tag
|
90 |
+
|
91 |
+
text_dict['caption'] = caption
|
92 |
+
text_dict['tokens'] = tokens
|
93 |
+
if f_tag == 0.0 and to_tag == 0.0:
|
94 |
+
flag = True
|
95 |
+
text_data.append(text_dict)
|
96 |
+
else:
|
97 |
+
try:
|
98 |
+
n_motion = motion[int(f_tag*fps) : int(to_tag*fps)]
|
99 |
+
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
|
100 |
+
continue
|
101 |
+
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
|
102 |
+
while new_name in data_dict:
|
103 |
+
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
|
104 |
+
data_dict[new_name] = {'motion': n_motion,
|
105 |
+
'length': len(n_motion),
|
106 |
+
'text':[text_dict]}
|
107 |
+
new_name_list.append(new_name)
|
108 |
+
length_list.append(len(n_motion))
|
109 |
+
except:
|
110 |
+
print(line_split)
|
111 |
+
print(line_split[2], line_split[3], f_tag, to_tag, name)
|
112 |
+
# break
|
113 |
+
|
114 |
+
if flag:
|
115 |
+
data_dict[name] = {'motion': motion,
|
116 |
+
'length': len(motion),
|
117 |
+
'text': text_data}
|
118 |
+
new_name_list.append(name)
|
119 |
+
length_list.append(len(motion))
|
120 |
+
except Exception as e:
|
121 |
+
# print(e)
|
122 |
+
pass
|
123 |
+
|
124 |
+
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
|
125 |
+
self.mean = mean
|
126 |
+
self.std = std
|
127 |
+
self.length_arr = np.array(length_list)
|
128 |
+
self.data_dict = data_dict
|
129 |
+
self.name_list = name_list
|
130 |
+
self.reset_max_len(self.max_length)
|
131 |
+
|
132 |
+
def reset_max_len(self, length):
|
133 |
+
assert length <= self.max_motion_length
|
134 |
+
self.pointer = np.searchsorted(self.length_arr, length)
|
135 |
+
print("Pointer Pointing at %d"%self.pointer)
|
136 |
+
self.max_length = length
|
137 |
+
|
138 |
+
def inv_transform(self, data):
|
139 |
+
return data * self.std + self.mean
|
140 |
+
|
141 |
+
def forward_transform(self, data):
|
142 |
+
return (data - self.mean) / self.std
|
143 |
+
|
144 |
+
def __len__(self):
|
145 |
+
return len(self.data_dict) - self.pointer
|
146 |
+
|
147 |
+
def __getitem__(self, item):
|
148 |
+
idx = self.pointer + item
|
149 |
+
name = self.name_list[idx]
|
150 |
+
data = self.data_dict[name]
|
151 |
+
# data = self.data_dict[self.name_list[idx]]
|
152 |
+
motion, m_length, text_list = data['motion'], data['length'], data['text']
|
153 |
+
# Randomly select a caption
|
154 |
+
text_data = random.choice(text_list)
|
155 |
+
caption, tokens = text_data['caption'], text_data['tokens']
|
156 |
+
|
157 |
+
if len(tokens) < self.max_text_len:
|
158 |
+
# pad with "unk"
|
159 |
+
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
|
160 |
+
sent_len = len(tokens)
|
161 |
+
tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len)
|
162 |
+
else:
|
163 |
+
# crop
|
164 |
+
tokens = tokens[:self.max_text_len]
|
165 |
+
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
|
166 |
+
sent_len = len(tokens)
|
167 |
+
pos_one_hots = []
|
168 |
+
word_embeddings = []
|
169 |
+
for token in tokens:
|
170 |
+
word_emb, pos_oh = self.w_vectorizer[token]
|
171 |
+
pos_one_hots.append(pos_oh[None, :])
|
172 |
+
word_embeddings.append(word_emb[None, :])
|
173 |
+
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
|
174 |
+
word_embeddings = np.concatenate(word_embeddings, axis=0)
|
175 |
+
|
176 |
+
if self.unit_length < 10:
|
177 |
+
coin2 = np.random.choice(['single', 'single', 'double'])
|
178 |
+
else:
|
179 |
+
coin2 = 'single'
|
180 |
+
|
181 |
+
if coin2 == 'double':
|
182 |
+
m_length = (m_length // self.unit_length - 1) * self.unit_length
|
183 |
+
elif coin2 == 'single':
|
184 |
+
m_length = (m_length // self.unit_length) * self.unit_length
|
185 |
+
idx = random.randint(0, len(motion) - m_length)
|
186 |
+
motion = motion[idx:idx+m_length]
|
187 |
+
|
188 |
+
"Z Normalization"
|
189 |
+
motion = (motion - self.mean) / self.std
|
190 |
+
|
191 |
+
if m_length < self.max_motion_length:
|
192 |
+
motion = np.concatenate([motion,
|
193 |
+
np.zeros((self.max_motion_length - m_length, motion.shape[1]))
|
194 |
+
], axis=0)
|
195 |
+
|
196 |
+
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), name
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
def DATALoader(dataset_name, is_test,
|
202 |
+
batch_size, w_vectorizer,
|
203 |
+
num_workers = 8, unit_length = 4) :
|
204 |
+
|
205 |
+
val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length),
|
206 |
+
batch_size,
|
207 |
+
shuffle = True,
|
208 |
+
num_workers=num_workers,
|
209 |
+
collate_fn=collate_fn,
|
210 |
+
drop_last = True)
|
211 |
+
return val_loader
|
212 |
+
|
213 |
+
|
214 |
+
def cycle(iterable):
|
215 |
+
while True:
|
216 |
+
for x in iterable:
|
217 |
+
yield x
|
VQ-Trans/dataset/dataset_TM_train.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
import numpy as np
|
4 |
+
from os.path import join as pjoin
|
5 |
+
import random
|
6 |
+
import codecs as cs
|
7 |
+
from tqdm import tqdm
|
8 |
+
import utils.paramUtil as paramUtil
|
9 |
+
from torch.utils.data._utils.collate import default_collate
|
10 |
+
|
11 |
+
|
12 |
+
def collate_fn(batch):
|
13 |
+
batch.sort(key=lambda x: x[3], reverse=True)
|
14 |
+
return default_collate(batch)
|
15 |
+
|
16 |
+
|
17 |
+
'''For use of training text-2-motion generative model'''
|
18 |
+
class Text2MotionDataset(data.Dataset):
|
19 |
+
def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None):
|
20 |
+
|
21 |
+
self.max_length = 64
|
22 |
+
self.pointer = 0
|
23 |
+
self.dataset_name = dataset_name
|
24 |
+
|
25 |
+
self.unit_length = unit_length
|
26 |
+
# self.mot_start_idx = codebook_size
|
27 |
+
self.mot_end_idx = codebook_size
|
28 |
+
self.mot_pad_idx = codebook_size + 1
|
29 |
+
if dataset_name == 't2m':
|
30 |
+
self.data_root = './dataset/HumanML3D'
|
31 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
32 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
33 |
+
self.joints_num = 22
|
34 |
+
radius = 4
|
35 |
+
fps = 20
|
36 |
+
self.max_motion_length = 26 if unit_length == 8 else 51
|
37 |
+
dim_pose = 263
|
38 |
+
kinematic_chain = paramUtil.t2m_kinematic_chain
|
39 |
+
elif dataset_name == 'kit':
|
40 |
+
self.data_root = './dataset/KIT-ML'
|
41 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
42 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
43 |
+
self.joints_num = 21
|
44 |
+
radius = 240 * 8
|
45 |
+
fps = 12.5
|
46 |
+
dim_pose = 251
|
47 |
+
self.max_motion_length = 26 if unit_length == 8 else 51
|
48 |
+
kinematic_chain = paramUtil.kit_kinematic_chain
|
49 |
+
|
50 |
+
split_file = pjoin(self.data_root, 'train.txt')
|
51 |
+
|
52 |
+
|
53 |
+
id_list = []
|
54 |
+
with cs.open(split_file, 'r') as f:
|
55 |
+
for line in f.readlines():
|
56 |
+
id_list.append(line.strip())
|
57 |
+
|
58 |
+
new_name_list = []
|
59 |
+
data_dict = {}
|
60 |
+
for name in tqdm(id_list):
|
61 |
+
try:
|
62 |
+
m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name))
|
63 |
+
|
64 |
+
# Read text
|
65 |
+
with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
|
66 |
+
text_data = []
|
67 |
+
flag = False
|
68 |
+
lines = f.readlines()
|
69 |
+
|
70 |
+
for line in lines:
|
71 |
+
try:
|
72 |
+
text_dict = {}
|
73 |
+
line_split = line.strip().split('#')
|
74 |
+
caption = line_split[0]
|
75 |
+
t_tokens = line_split[1].split(' ')
|
76 |
+
f_tag = float(line_split[2])
|
77 |
+
to_tag = float(line_split[3])
|
78 |
+
f_tag = 0.0 if np.isnan(f_tag) else f_tag
|
79 |
+
to_tag = 0.0 if np.isnan(to_tag) else to_tag
|
80 |
+
|
81 |
+
text_dict['caption'] = caption
|
82 |
+
text_dict['tokens'] = t_tokens
|
83 |
+
if f_tag == 0.0 and to_tag == 0.0:
|
84 |
+
flag = True
|
85 |
+
text_data.append(text_dict)
|
86 |
+
else:
|
87 |
+
m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)]
|
88 |
+
|
89 |
+
if len(m_token_list_new) == 0:
|
90 |
+
continue
|
91 |
+
new_name = '%s_%f_%f'%(name, f_tag, to_tag)
|
92 |
+
|
93 |
+
data_dict[new_name] = {'m_token_list': m_token_list_new,
|
94 |
+
'text':[text_dict]}
|
95 |
+
new_name_list.append(new_name)
|
96 |
+
except:
|
97 |
+
pass
|
98 |
+
|
99 |
+
if flag:
|
100 |
+
data_dict[name] = {'m_token_list': m_token_list,
|
101 |
+
'text':text_data}
|
102 |
+
new_name_list.append(name)
|
103 |
+
except:
|
104 |
+
pass
|
105 |
+
self.data_dict = data_dict
|
106 |
+
self.name_list = new_name_list
|
107 |
+
|
108 |
+
def __len__(self):
|
109 |
+
return len(self.data_dict)
|
110 |
+
|
111 |
+
def __getitem__(self, item):
|
112 |
+
data = self.data_dict[self.name_list[item]]
|
113 |
+
m_token_list, text_list = data['m_token_list'], data['text']
|
114 |
+
m_tokens = random.choice(m_token_list)
|
115 |
+
|
116 |
+
text_data = random.choice(text_list)
|
117 |
+
caption= text_data['caption']
|
118 |
+
|
119 |
+
|
120 |
+
coin = np.random.choice([False, False, True])
|
121 |
+
# print(len(m_tokens))
|
122 |
+
if coin:
|
123 |
+
# drop one token at the head or tail
|
124 |
+
coin2 = np.random.choice([True, False])
|
125 |
+
if coin2:
|
126 |
+
m_tokens = m_tokens[:-1]
|
127 |
+
else:
|
128 |
+
m_tokens = m_tokens[1:]
|
129 |
+
m_tokens_len = m_tokens.shape[0]
|
130 |
+
|
131 |
+
if m_tokens_len+1 < self.max_motion_length:
|
132 |
+
m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0)
|
133 |
+
else:
|
134 |
+
m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0)
|
135 |
+
|
136 |
+
return caption, m_tokens.reshape(-1), m_tokens_len
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
def DATALoader(dataset_name,
|
142 |
+
batch_size, codebook_size, tokenizer_name, unit_length=4,
|
143 |
+
num_workers = 8) :
|
144 |
+
|
145 |
+
train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length),
|
146 |
+
batch_size,
|
147 |
+
shuffle=True,
|
148 |
+
num_workers=num_workers,
|
149 |
+
#collate_fn=collate_fn,
|
150 |
+
drop_last = True)
|
151 |
+
|
152 |
+
|
153 |
+
return train_loader
|
154 |
+
|
155 |
+
|
156 |
+
def cycle(iterable):
|
157 |
+
while True:
|
158 |
+
for x in iterable:
|
159 |
+
yield x
|
160 |
+
|
161 |
+
|
VQ-Trans/dataset/dataset_VQ.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
import numpy as np
|
4 |
+
from os.path import join as pjoin
|
5 |
+
import random
|
6 |
+
import codecs as cs
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class VQMotionDataset(data.Dataset):
|
12 |
+
def __init__(self, dataset_name, window_size = 64, unit_length = 4):
|
13 |
+
self.window_size = window_size
|
14 |
+
self.unit_length = unit_length
|
15 |
+
self.dataset_name = dataset_name
|
16 |
+
|
17 |
+
if dataset_name == 't2m':
|
18 |
+
self.data_root = './dataset/HumanML3D'
|
19 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
20 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
21 |
+
self.joints_num = 22
|
22 |
+
self.max_motion_length = 196
|
23 |
+
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
|
24 |
+
|
25 |
+
elif dataset_name == 'kit':
|
26 |
+
self.data_root = './dataset/KIT-ML'
|
27 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
28 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
29 |
+
self.joints_num = 21
|
30 |
+
|
31 |
+
self.max_motion_length = 196
|
32 |
+
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
|
33 |
+
|
34 |
+
joints_num = self.joints_num
|
35 |
+
|
36 |
+
mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
|
37 |
+
std = np.load(pjoin(self.meta_dir, 'std.npy'))
|
38 |
+
|
39 |
+
split_file = pjoin(self.data_root, 'train.txt')
|
40 |
+
|
41 |
+
self.data = []
|
42 |
+
self.lengths = []
|
43 |
+
id_list = []
|
44 |
+
with cs.open(split_file, 'r') as f:
|
45 |
+
for line in f.readlines():
|
46 |
+
id_list.append(line.strip())
|
47 |
+
|
48 |
+
for name in tqdm(id_list):
|
49 |
+
try:
|
50 |
+
motion = np.load(pjoin(self.motion_dir, name + '.npy'))
|
51 |
+
if motion.shape[0] < self.window_size:
|
52 |
+
continue
|
53 |
+
self.lengths.append(motion.shape[0] - self.window_size)
|
54 |
+
self.data.append(motion)
|
55 |
+
except:
|
56 |
+
# Some motion may not exist in KIT dataset
|
57 |
+
pass
|
58 |
+
|
59 |
+
|
60 |
+
self.mean = mean
|
61 |
+
self.std = std
|
62 |
+
print("Total number of motions {}".format(len(self.data)))
|
63 |
+
|
64 |
+
def inv_transform(self, data):
|
65 |
+
return data * self.std + self.mean
|
66 |
+
|
67 |
+
def compute_sampling_prob(self) :
|
68 |
+
|
69 |
+
prob = np.array(self.lengths, dtype=np.float32)
|
70 |
+
prob /= np.sum(prob)
|
71 |
+
return prob
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.data)
|
75 |
+
|
76 |
+
def __getitem__(self, item):
|
77 |
+
motion = self.data[item]
|
78 |
+
|
79 |
+
idx = random.randint(0, len(motion) - self.window_size)
|
80 |
+
|
81 |
+
motion = motion[idx:idx+self.window_size]
|
82 |
+
"Z Normalization"
|
83 |
+
motion = (motion - self.mean) / self.std
|
84 |
+
|
85 |
+
return motion
|
86 |
+
|
87 |
+
def DATALoader(dataset_name,
|
88 |
+
batch_size,
|
89 |
+
num_workers = 8,
|
90 |
+
window_size = 64,
|
91 |
+
unit_length = 4):
|
92 |
+
|
93 |
+
trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length)
|
94 |
+
prob = trainSet.compute_sampling_prob()
|
95 |
+
sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True)
|
96 |
+
train_loader = torch.utils.data.DataLoader(trainSet,
|
97 |
+
batch_size,
|
98 |
+
shuffle=True,
|
99 |
+
#sampler=sampler,
|
100 |
+
num_workers=num_workers,
|
101 |
+
#collate_fn=collate_fn,
|
102 |
+
drop_last = True)
|
103 |
+
|
104 |
+
return train_loader
|
105 |
+
|
106 |
+
def cycle(iterable):
|
107 |
+
while True:
|
108 |
+
for x in iterable:
|
109 |
+
yield x
|
VQ-Trans/dataset/dataset_tokenize.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
import numpy as np
|
4 |
+
from os.path import join as pjoin
|
5 |
+
import random
|
6 |
+
import codecs as cs
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class VQMotionDataset(data.Dataset):
|
12 |
+
def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8):
|
13 |
+
self.window_size = window_size
|
14 |
+
self.unit_length = unit_length
|
15 |
+
self.feat_bias = feat_bias
|
16 |
+
|
17 |
+
self.dataset_name = dataset_name
|
18 |
+
min_motion_len = 40 if dataset_name =='t2m' else 24
|
19 |
+
|
20 |
+
if dataset_name == 't2m':
|
21 |
+
self.data_root = './dataset/HumanML3D'
|
22 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
23 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
24 |
+
self.joints_num = 22
|
25 |
+
radius = 4
|
26 |
+
fps = 20
|
27 |
+
self.max_motion_length = 196
|
28 |
+
dim_pose = 263
|
29 |
+
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
|
30 |
+
#kinematic_chain = paramUtil.t2m_kinematic_chain
|
31 |
+
elif dataset_name == 'kit':
|
32 |
+
self.data_root = './dataset/KIT-ML'
|
33 |
+
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
|
34 |
+
self.text_dir = pjoin(self.data_root, 'texts')
|
35 |
+
self.joints_num = 21
|
36 |
+
radius = 240 * 8
|
37 |
+
fps = 12.5
|
38 |
+
dim_pose = 251
|
39 |
+
self.max_motion_length = 196
|
40 |
+
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
|
41 |
+
#kinematic_chain = paramUtil.kit_kinematic_chain
|
42 |
+
|
43 |
+
joints_num = self.joints_num
|
44 |
+
|
45 |
+
mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
|
46 |
+
std = np.load(pjoin(self.meta_dir, 'std.npy'))
|
47 |
+
|
48 |
+
split_file = pjoin(self.data_root, 'train.txt')
|
49 |
+
|
50 |
+
data_dict = {}
|
51 |
+
id_list = []
|
52 |
+
with cs.open(split_file, 'r') as f:
|
53 |
+
for line in f.readlines():
|
54 |
+
id_list.append(line.strip())
|
55 |
+
|
56 |
+
new_name_list = []
|
57 |
+
length_list = []
|
58 |
+
for name in tqdm(id_list):
|
59 |
+
try:
|
60 |
+
motion = np.load(pjoin(self.motion_dir, name + '.npy'))
|
61 |
+
if (len(motion)) < min_motion_len or (len(motion) >= 200):
|
62 |
+
continue
|
63 |
+
|
64 |
+
data_dict[name] = {'motion': motion,
|
65 |
+
'length': len(motion),
|
66 |
+
'name': name}
|
67 |
+
new_name_list.append(name)
|
68 |
+
length_list.append(len(motion))
|
69 |
+
except:
|
70 |
+
# Some motion may not exist in KIT dataset
|
71 |
+
pass
|
72 |
+
|
73 |
+
|
74 |
+
self.mean = mean
|
75 |
+
self.std = std
|
76 |
+
self.length_arr = np.array(length_list)
|
77 |
+
self.data_dict = data_dict
|
78 |
+
self.name_list = new_name_list
|
79 |
+
|
80 |
+
def inv_transform(self, data):
|
81 |
+
return data * self.std + self.mean
|
82 |
+
|
83 |
+
def __len__(self):
|
84 |
+
return len(self.data_dict)
|
85 |
+
|
86 |
+
def __getitem__(self, item):
|
87 |
+
name = self.name_list[item]
|
88 |
+
data = self.data_dict[name]
|
89 |
+
motion, m_length = data['motion'], data['length']
|
90 |
+
|
91 |
+
m_length = (m_length // self.unit_length) * self.unit_length
|
92 |
+
|
93 |
+
idx = random.randint(0, len(motion) - m_length)
|
94 |
+
motion = motion[idx:idx+m_length]
|
95 |
+
|
96 |
+
"Z Normalization"
|
97 |
+
motion = (motion - self.mean) / self.std
|
98 |
+
|
99 |
+
return motion, name
|
100 |
+
|
101 |
+
def DATALoader(dataset_name,
|
102 |
+
batch_size = 1,
|
103 |
+
num_workers = 8, unit_length = 4) :
|
104 |
+
|
105 |
+
train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length),
|
106 |
+
batch_size,
|
107 |
+
shuffle=True,
|
108 |
+
num_workers=num_workers,
|
109 |
+
#collate_fn=collate_fn,
|
110 |
+
drop_last = True)
|
111 |
+
|
112 |
+
return train_loader
|
113 |
+
|
114 |
+
def cycle(iterable):
|
115 |
+
while True:
|
116 |
+
for x in iterable:
|
117 |
+
yield x
|
VQ-Trans/dataset/prepare/download_extractor.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rm -rf checkpoints
|
2 |
+
mkdir checkpoints
|
3 |
+
cd checkpoints
|
4 |
+
echo -e "Downloading extractors"
|
5 |
+
gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view
|
6 |
+
gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view
|
7 |
+
|
8 |
+
|
9 |
+
unzip t2m.zip
|
10 |
+
unzip kit.zip
|
11 |
+
|
12 |
+
echo -e "Cleaning\n"
|
13 |
+
rm t2m.zip
|
14 |
+
rm kit.zip
|
15 |
+
echo -e "Downloading done!"
|
VQ-Trans/dataset/prepare/download_glove.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
echo -e "Downloading glove (in use by the evaluators)"
|
2 |
+
gdown --fuzzy https://drive.google.com/file/d/1bCeS6Sh_mLVTebxIgiUHgdPrroW06mb6/view?usp=sharing
|
3 |
+
rm -rf glove
|
4 |
+
|
5 |
+
unzip glove.zip
|
6 |
+
echo -e "Cleaning\n"
|
7 |
+
rm glove.zip
|
8 |
+
|
9 |
+
echo -e "Downloading done!"
|
VQ-Trans/dataset/prepare/download_model.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
mkdir -p pretrained
|
3 |
+
cd pretrained/
|
4 |
+
|
5 |
+
echo -e "The pretrained model files will be stored in the 'pretrained' folder\n"
|
6 |
+
gdown 1LaOvwypF-jM2Axnq5dc-Iuvv3w_G-WDE
|
7 |
+
|
8 |
+
unzip VQTrans_pretrained.zip
|
9 |
+
echo -e "Cleaning\n"
|
10 |
+
rm VQTrans_pretrained.zip
|
11 |
+
|
12 |
+
echo -e "Downloading done!"
|
VQ-Trans/dataset/prepare/download_smpl.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
mkdir -p body_models
|
3 |
+
cd body_models/
|
4 |
+
|
5 |
+
echo -e "The smpl files will be stored in the 'body_models/smpl/' folder\n"
|
6 |
+
gdown 1INYlGA76ak_cKGzvpOV2Pe6RkYTlXTW2
|
7 |
+
rm -rf smpl
|
8 |
+
|
9 |
+
unzip smpl.zip
|
10 |
+
echo -e "Cleaning\n"
|
11 |
+
rm smpl.zip
|
12 |
+
|
13 |
+
echo -e "Downloading done!"
|
VQ-Trans/environment.yml
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: VQTrans
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- defaults
|
5 |
+
dependencies:
|
6 |
+
- _libgcc_mutex=0.1=main
|
7 |
+
- _openmp_mutex=4.5=1_gnu
|
8 |
+
- blas=1.0=mkl
|
9 |
+
- bzip2=1.0.8=h7b6447c_0
|
10 |
+
- ca-certificates=2021.7.5=h06a4308_1
|
11 |
+
- certifi=2021.5.30=py38h06a4308_0
|
12 |
+
- cudatoolkit=10.1.243=h6bb024c_0
|
13 |
+
- ffmpeg=4.3=hf484d3e_0
|
14 |
+
- freetype=2.10.4=h5ab3b9f_0
|
15 |
+
- gmp=6.2.1=h2531618_2
|
16 |
+
- gnutls=3.6.15=he1e5248_0
|
17 |
+
- intel-openmp=2021.3.0=h06a4308_3350
|
18 |
+
- jpeg=9b=h024ee3a_2
|
19 |
+
- lame=3.100=h7b6447c_0
|
20 |
+
- lcms2=2.12=h3be6417_0
|
21 |
+
- ld_impl_linux-64=2.35.1=h7274673_9
|
22 |
+
- libffi=3.3=he6710b0_2
|
23 |
+
- libgcc-ng=9.3.0=h5101ec6_17
|
24 |
+
- libgomp=9.3.0=h5101ec6_17
|
25 |
+
- libiconv=1.15=h63c8f33_5
|
26 |
+
- libidn2=2.3.2=h7f8727e_0
|
27 |
+
- libpng=1.6.37=hbc83047_0
|
28 |
+
- libstdcxx-ng=9.3.0=hd4cf53a_17
|
29 |
+
- libtasn1=4.16.0=h27cfd23_0
|
30 |
+
- libtiff=4.2.0=h85742a9_0
|
31 |
+
- libunistring=0.9.10=h27cfd23_0
|
32 |
+
- libuv=1.40.0=h7b6447c_0
|
33 |
+
- libwebp-base=1.2.0=h27cfd23_0
|
34 |
+
- lz4-c=1.9.3=h295c915_1
|
35 |
+
- mkl=2021.3.0=h06a4308_520
|
36 |
+
- mkl-service=2.4.0=py38h7f8727e_0
|
37 |
+
- mkl_fft=1.3.0=py38h42c9631_2
|
38 |
+
- mkl_random=1.2.2=py38h51133e4_0
|
39 |
+
- ncurses=6.2=he6710b0_1
|
40 |
+
- nettle=3.7.3=hbbd107a_1
|
41 |
+
- ninja=1.10.2=hff7bd54_1
|
42 |
+
- numpy=1.20.3=py38hf144106_0
|
43 |
+
- numpy-base=1.20.3=py38h74d4b33_0
|
44 |
+
- olefile=0.46=py_0
|
45 |
+
- openh264=2.1.0=hd408876_0
|
46 |
+
- openjpeg=2.3.0=h05c96fa_1
|
47 |
+
- openssl=1.1.1k=h27cfd23_0
|
48 |
+
- pillow=8.3.1=py38h2c7a002_0
|
49 |
+
- pip=21.0.1=py38h06a4308_0
|
50 |
+
- python=3.8.11=h12debd9_0_cpython
|
51 |
+
- pytorch=1.8.1=py3.8_cuda10.1_cudnn7.6.3_0
|
52 |
+
- readline=8.1=h27cfd23_0
|
53 |
+
- setuptools=52.0.0=py38h06a4308_0
|
54 |
+
- six=1.16.0=pyhd3eb1b0_0
|
55 |
+
- sqlite=3.36.0=hc218d9a_0
|
56 |
+
- tk=8.6.10=hbc83047_0
|
57 |
+
- torchaudio=0.8.1=py38
|
58 |
+
- torchvision=0.9.1=py38_cu101
|
59 |
+
- typing_extensions=3.10.0.0=pyh06a4308_0
|
60 |
+
- wheel=0.37.0=pyhd3eb1b0_0
|
61 |
+
- xz=5.2.5=h7b6447c_0
|
62 |
+
- zlib=1.2.11=h7b6447c_3
|
63 |
+
- zstd=1.4.9=haebb681_0
|
64 |
+
- pip:
|
65 |
+
- absl-py==0.13.0
|
66 |
+
- backcall==0.2.0
|
67 |
+
- cachetools==4.2.2
|
68 |
+
- charset-normalizer==2.0.4
|
69 |
+
- chumpy==0.70
|
70 |
+
- cycler==0.10.0
|
71 |
+
- decorator==5.0.9
|
72 |
+
- google-auth==1.35.0
|
73 |
+
- google-auth-oauthlib==0.4.5
|
74 |
+
- grpcio==1.39.0
|
75 |
+
- idna==3.2
|
76 |
+
- imageio==2.9.0
|
77 |
+
- ipdb==0.13.9
|
78 |
+
- ipython==7.26.0
|
79 |
+
- ipython-genutils==0.2.0
|
80 |
+
- jedi==0.18.0
|
81 |
+
- joblib==1.0.1
|
82 |
+
- kiwisolver==1.3.1
|
83 |
+
- markdown==3.3.4
|
84 |
+
- matplotlib==3.4.3
|
85 |
+
- matplotlib-inline==0.1.2
|
86 |
+
- oauthlib==3.1.1
|
87 |
+
- pandas==1.3.2
|
88 |
+
- parso==0.8.2
|
89 |
+
- pexpect==4.8.0
|
90 |
+
- pickleshare==0.7.5
|
91 |
+
- prompt-toolkit==3.0.20
|
92 |
+
- protobuf==3.17.3
|
93 |
+
- ptyprocess==0.7.0
|
94 |
+
- pyasn1==0.4.8
|
95 |
+
- pyasn1-modules==0.2.8
|
96 |
+
- pygments==2.10.0
|
97 |
+
- pyparsing==2.4.7
|
98 |
+
- python-dateutil==2.8.2
|
99 |
+
- pytz==2021.1
|
100 |
+
- pyyaml==5.4.1
|
101 |
+
- requests==2.26.0
|
102 |
+
- requests-oauthlib==1.3.0
|
103 |
+
- rsa==4.7.2
|
104 |
+
- scikit-learn==0.24.2
|
105 |
+
- scipy==1.7.1
|
106 |
+
- sklearn==0.0
|
107 |
+
- smplx==0.1.28
|
108 |
+
- tensorboard==2.6.0
|
109 |
+
- tensorboard-data-server==0.6.1
|
110 |
+
- tensorboard-plugin-wit==1.8.0
|
111 |
+
- threadpoolctl==2.2.0
|
112 |
+
- toml==0.10.2
|
113 |
+
- tqdm==4.62.2
|
114 |
+
- traitlets==5.0.5
|
115 |
+
- urllib3==1.26.6
|
116 |
+
- wcwidth==0.2.5
|
117 |
+
- werkzeug==2.0.1
|
118 |
+
- git+https://github.com/openai/CLIP.git
|
119 |
+
- git+https://github.com/nghorbani/human_body_prior
|
120 |
+
- gdown
|
121 |
+
- moviepy
|
VQ-Trans/models/encdec.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.resnet import Resnet1D
|
3 |
+
|
4 |
+
class Encoder(nn.Module):
|
5 |
+
def __init__(self,
|
6 |
+
input_emb_width = 3,
|
7 |
+
output_emb_width = 512,
|
8 |
+
down_t = 3,
|
9 |
+
stride_t = 2,
|
10 |
+
width = 512,
|
11 |
+
depth = 3,
|
12 |
+
dilation_growth_rate = 3,
|
13 |
+
activation='relu',
|
14 |
+
norm=None):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
blocks = []
|
18 |
+
filter_t, pad_t = stride_t * 2, stride_t // 2
|
19 |
+
blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1))
|
20 |
+
blocks.append(nn.ReLU())
|
21 |
+
|
22 |
+
for i in range(down_t):
|
23 |
+
input_dim = width
|
24 |
+
block = nn.Sequential(
|
25 |
+
nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t),
|
26 |
+
Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm),
|
27 |
+
)
|
28 |
+
blocks.append(block)
|
29 |
+
blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1))
|
30 |
+
self.model = nn.Sequential(*blocks)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.model(x)
|
34 |
+
|
35 |
+
class Decoder(nn.Module):
|
36 |
+
def __init__(self,
|
37 |
+
input_emb_width = 3,
|
38 |
+
output_emb_width = 512,
|
39 |
+
down_t = 3,
|
40 |
+
stride_t = 2,
|
41 |
+
width = 512,
|
42 |
+
depth = 3,
|
43 |
+
dilation_growth_rate = 3,
|
44 |
+
activation='relu',
|
45 |
+
norm=None):
|
46 |
+
super().__init__()
|
47 |
+
blocks = []
|
48 |
+
|
49 |
+
filter_t, pad_t = stride_t * 2, stride_t // 2
|
50 |
+
blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1))
|
51 |
+
blocks.append(nn.ReLU())
|
52 |
+
for i in range(down_t):
|
53 |
+
out_dim = width
|
54 |
+
block = nn.Sequential(
|
55 |
+
Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
|
56 |
+
nn.Upsample(scale_factor=2, mode='nearest'),
|
57 |
+
nn.Conv1d(width, out_dim, 3, 1, 1)
|
58 |
+
)
|
59 |
+
blocks.append(block)
|
60 |
+
blocks.append(nn.Conv1d(width, width, 3, 1, 1))
|
61 |
+
blocks.append(nn.ReLU())
|
62 |
+
blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1))
|
63 |
+
self.model = nn.Sequential(*blocks)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
return self.model(x)
|
67 |
+
|
VQ-Trans/models/evaluator_wrapper.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from os.path import join as pjoin
|
4 |
+
import numpy as np
|
5 |
+
from models.modules import MovementConvEncoder, TextEncoderBiGRUCo, MotionEncoderBiGRUCo
|
6 |
+
from utils.word_vectorizer import POS_enumerator
|
7 |
+
|
8 |
+
def build_models(opt):
|
9 |
+
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
|
10 |
+
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
|
11 |
+
pos_size=opt.dim_pos_ohot,
|
12 |
+
hidden_size=opt.dim_text_hidden,
|
13 |
+
output_size=opt.dim_coemb_hidden,
|
14 |
+
device=opt.device)
|
15 |
+
|
16 |
+
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
|
17 |
+
hidden_size=opt.dim_motion_hidden,
|
18 |
+
output_size=opt.dim_coemb_hidden,
|
19 |
+
device=opt.device)
|
20 |
+
|
21 |
+
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
|
22 |
+
map_location=opt.device)
|
23 |
+
movement_enc.load_state_dict(checkpoint['movement_encoder'])
|
24 |
+
text_enc.load_state_dict(checkpoint['text_encoder'])
|
25 |
+
motion_enc.load_state_dict(checkpoint['motion_encoder'])
|
26 |
+
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
|
27 |
+
return text_enc, motion_enc, movement_enc
|
28 |
+
|
29 |
+
|
30 |
+
class EvaluatorModelWrapper(object):
|
31 |
+
|
32 |
+
def __init__(self, opt):
|
33 |
+
|
34 |
+
if opt.dataset_name == 't2m':
|
35 |
+
opt.dim_pose = 263
|
36 |
+
elif opt.dataset_name == 'kit':
|
37 |
+
opt.dim_pose = 251
|
38 |
+
else:
|
39 |
+
raise KeyError('Dataset not Recognized!!!')
|
40 |
+
|
41 |
+
opt.dim_word = 300
|
42 |
+
opt.max_motion_length = 196
|
43 |
+
opt.dim_pos_ohot = len(POS_enumerator)
|
44 |
+
opt.dim_motion_hidden = 1024
|
45 |
+
opt.max_text_len = 20
|
46 |
+
opt.dim_text_hidden = 512
|
47 |
+
opt.dim_coemb_hidden = 512
|
48 |
+
|
49 |
+
# print(opt)
|
50 |
+
|
51 |
+
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
|
52 |
+
self.opt = opt
|
53 |
+
self.device = opt.device
|
54 |
+
|
55 |
+
self.text_encoder.to(opt.device)
|
56 |
+
self.motion_encoder.to(opt.device)
|
57 |
+
self.movement_encoder.to(opt.device)
|
58 |
+
|
59 |
+
self.text_encoder.eval()
|
60 |
+
self.motion_encoder.eval()
|
61 |
+
self.movement_encoder.eval()
|
62 |
+
|
63 |
+
# Please note that the results does not following the order of inputs
|
64 |
+
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
|
65 |
+
with torch.no_grad():
|
66 |
+
word_embs = word_embs.detach().to(self.device).float()
|
67 |
+
pos_ohot = pos_ohot.detach().to(self.device).float()
|
68 |
+
motions = motions.detach().to(self.device).float()
|
69 |
+
|
70 |
+
'''Movement Encoding'''
|
71 |
+
movements = self.movement_encoder(motions[..., :-4]).detach()
|
72 |
+
m_lens = m_lens // self.opt.unit_length
|
73 |
+
motion_embedding = self.motion_encoder(movements, m_lens)
|
74 |
+
|
75 |
+
'''Text Encoding'''
|
76 |
+
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
|
77 |
+
return text_embedding, motion_embedding
|
78 |
+
|
79 |
+
# Please note that the results does not following the order of inputs
|
80 |
+
def get_motion_embeddings(self, motions, m_lens):
|
81 |
+
with torch.no_grad():
|
82 |
+
motions = motions.detach().to(self.device).float()
|
83 |
+
|
84 |
+
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
|
85 |
+
motions = motions[align_idx]
|
86 |
+
m_lens = m_lens[align_idx]
|
87 |
+
|
88 |
+
'''Movement Encoding'''
|
89 |
+
movements = self.movement_encoder(motions[..., :-4]).detach()
|
90 |
+
m_lens = m_lens // self.opt.unit_length
|
91 |
+
motion_embedding = self.motion_encoder(movements, m_lens)
|
92 |
+
return motion_embedding
|
VQ-Trans/models/modules.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn.utils.rnn import pack_padded_sequence
|
4 |
+
|
5 |
+
def init_weight(m):
|
6 |
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
|
7 |
+
nn.init.xavier_normal_(m.weight)
|
8 |
+
# m.bias.data.fill_(0.01)
|
9 |
+
if m.bias is not None:
|
10 |
+
nn.init.constant_(m.bias, 0)
|
11 |
+
|
12 |
+
|
13 |
+
class MovementConvEncoder(nn.Module):
|
14 |
+
def __init__(self, input_size, hidden_size, output_size):
|
15 |
+
super(MovementConvEncoder, self).__init__()
|
16 |
+
self.main = nn.Sequential(
|
17 |
+
nn.Conv1d(input_size, hidden_size, 4, 2, 1),
|
18 |
+
nn.Dropout(0.2, inplace=True),
|
19 |
+
nn.LeakyReLU(0.2, inplace=True),
|
20 |
+
nn.Conv1d(hidden_size, output_size, 4, 2, 1),
|
21 |
+
nn.Dropout(0.2, inplace=True),
|
22 |
+
nn.LeakyReLU(0.2, inplace=True),
|
23 |
+
)
|
24 |
+
self.out_net = nn.Linear(output_size, output_size)
|
25 |
+
self.main.apply(init_weight)
|
26 |
+
self.out_net.apply(init_weight)
|
27 |
+
|
28 |
+
def forward(self, inputs):
|
29 |
+
inputs = inputs.permute(0, 2, 1)
|
30 |
+
outputs = self.main(inputs).permute(0, 2, 1)
|
31 |
+
# print(outputs.shape)
|
32 |
+
return self.out_net(outputs)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
class TextEncoderBiGRUCo(nn.Module):
|
37 |
+
def __init__(self, word_size, pos_size, hidden_size, output_size, device):
|
38 |
+
super(TextEncoderBiGRUCo, self).__init__()
|
39 |
+
self.device = device
|
40 |
+
|
41 |
+
self.pos_emb = nn.Linear(pos_size, word_size)
|
42 |
+
self.input_emb = nn.Linear(word_size, hidden_size)
|
43 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
44 |
+
self.output_net = nn.Sequential(
|
45 |
+
nn.Linear(hidden_size * 2, hidden_size),
|
46 |
+
nn.LayerNorm(hidden_size),
|
47 |
+
nn.LeakyReLU(0.2, inplace=True),
|
48 |
+
nn.Linear(hidden_size, output_size)
|
49 |
+
)
|
50 |
+
|
51 |
+
self.input_emb.apply(init_weight)
|
52 |
+
self.pos_emb.apply(init_weight)
|
53 |
+
self.output_net.apply(init_weight)
|
54 |
+
self.hidden_size = hidden_size
|
55 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
56 |
+
|
57 |
+
# input(batch_size, seq_len, dim)
|
58 |
+
def forward(self, word_embs, pos_onehot, cap_lens):
|
59 |
+
num_samples = word_embs.shape[0]
|
60 |
+
|
61 |
+
pos_embs = self.pos_emb(pos_onehot)
|
62 |
+
inputs = word_embs + pos_embs
|
63 |
+
input_embs = self.input_emb(inputs)
|
64 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
65 |
+
|
66 |
+
cap_lens = cap_lens.data.tolist()
|
67 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
|
68 |
+
|
69 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
70 |
+
|
71 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
72 |
+
|
73 |
+
return self.output_net(gru_last)
|
74 |
+
|
75 |
+
|
76 |
+
class MotionEncoderBiGRUCo(nn.Module):
|
77 |
+
def __init__(self, input_size, hidden_size, output_size, device):
|
78 |
+
super(MotionEncoderBiGRUCo, self).__init__()
|
79 |
+
self.device = device
|
80 |
+
|
81 |
+
self.input_emb = nn.Linear(input_size, hidden_size)
|
82 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
83 |
+
self.output_net = nn.Sequential(
|
84 |
+
nn.Linear(hidden_size*2, hidden_size),
|
85 |
+
nn.LayerNorm(hidden_size),
|
86 |
+
nn.LeakyReLU(0.2, inplace=True),
|
87 |
+
nn.Linear(hidden_size, output_size)
|
88 |
+
)
|
89 |
+
|
90 |
+
self.input_emb.apply(init_weight)
|
91 |
+
self.output_net.apply(init_weight)
|
92 |
+
self.hidden_size = hidden_size
|
93 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
94 |
+
|
95 |
+
# input(batch_size, seq_len, dim)
|
96 |
+
def forward(self, inputs, m_lens):
|
97 |
+
num_samples = inputs.shape[0]
|
98 |
+
|
99 |
+
input_embs = self.input_emb(inputs)
|
100 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
101 |
+
|
102 |
+
cap_lens = m_lens.data.tolist()
|
103 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)
|
104 |
+
|
105 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
106 |
+
|
107 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
108 |
+
|
109 |
+
return self.output_net(gru_last)
|
VQ-Trans/models/pos_encoding.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various positional encodings for the transformer.
|
3 |
+
"""
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
def PE1d_sincos(seq_length, dim):
|
9 |
+
"""
|
10 |
+
:param d_model: dimension of the model
|
11 |
+
:param length: length of positions
|
12 |
+
:return: length*d_model position matrix
|
13 |
+
"""
|
14 |
+
if dim % 2 != 0:
|
15 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
16 |
+
"odd dim (got dim={:d})".format(dim))
|
17 |
+
pe = torch.zeros(seq_length, dim)
|
18 |
+
position = torch.arange(0, seq_length).unsqueeze(1)
|
19 |
+
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
|
20 |
+
-(math.log(10000.0) / dim)))
|
21 |
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
22 |
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
23 |
+
|
24 |
+
return pe.unsqueeze(1)
|
25 |
+
|
26 |
+
|
27 |
+
class PositionEmbedding(nn.Module):
|
28 |
+
"""
|
29 |
+
Absolute pos embedding (standard), learned.
|
30 |
+
"""
|
31 |
+
def __init__(self, seq_length, dim, dropout, grad=False):
|
32 |
+
super().__init__()
|
33 |
+
self.embed = nn.Parameter(data=PE1d_sincos(seq_length, dim), requires_grad=grad)
|
34 |
+
self.dropout = nn.Dropout(p=dropout)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
# x.shape: bs, seq_len, feat_dim
|
38 |
+
l = x.shape[1]
|
39 |
+
x = x.permute(1, 0, 2) + self.embed[:l].expand(x.permute(1, 0, 2).shape)
|
40 |
+
x = self.dropout(x.permute(1, 0, 2))
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
VQ-Trans/models/quantize_cnn.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
class QuantizeEMAReset(nn.Module):
|
7 |
+
def __init__(self, nb_code, code_dim, args):
|
8 |
+
super().__init__()
|
9 |
+
self.nb_code = nb_code
|
10 |
+
self.code_dim = code_dim
|
11 |
+
self.mu = args.mu
|
12 |
+
self.reset_codebook()
|
13 |
+
|
14 |
+
def reset_codebook(self):
|
15 |
+
self.init = False
|
16 |
+
self.code_sum = None
|
17 |
+
self.code_count = None
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
|
20 |
+
else:
|
21 |
+
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim))
|
22 |
+
|
23 |
+
def _tile(self, x):
|
24 |
+
nb_code_x, code_dim = x.shape
|
25 |
+
if nb_code_x < self.nb_code:
|
26 |
+
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
|
27 |
+
std = 0.01 / np.sqrt(code_dim)
|
28 |
+
out = x.repeat(n_repeats, 1)
|
29 |
+
out = out + torch.randn_like(out) * std
|
30 |
+
else :
|
31 |
+
out = x
|
32 |
+
return out
|
33 |
+
|
34 |
+
def init_codebook(self, x):
|
35 |
+
out = self._tile(x)
|
36 |
+
self.codebook = out[:self.nb_code]
|
37 |
+
self.code_sum = self.codebook.clone()
|
38 |
+
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
|
39 |
+
self.init = True
|
40 |
+
|
41 |
+
@torch.no_grad()
|
42 |
+
def compute_perplexity(self, code_idx) :
|
43 |
+
# Calculate new centres
|
44 |
+
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
|
45 |
+
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
|
46 |
+
|
47 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
48 |
+
prob = code_count / torch.sum(code_count)
|
49 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
50 |
+
return perplexity
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def update_codebook(self, x, code_idx):
|
54 |
+
|
55 |
+
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
|
56 |
+
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
|
57 |
+
|
58 |
+
code_sum = torch.matmul(code_onehot, x) # nb_code, w
|
59 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
60 |
+
|
61 |
+
out = self._tile(x)
|
62 |
+
code_rand = out[:self.nb_code]
|
63 |
+
|
64 |
+
# Update centres
|
65 |
+
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
|
66 |
+
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
|
67 |
+
|
68 |
+
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
|
69 |
+
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
|
70 |
+
|
71 |
+
self.codebook = usage * code_update + (1 - usage) * code_rand
|
72 |
+
prob = code_count / torch.sum(code_count)
|
73 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
74 |
+
|
75 |
+
|
76 |
+
return perplexity
|
77 |
+
|
78 |
+
def preprocess(self, x):
|
79 |
+
# NCT -> NTC -> [NT, C]
|
80 |
+
x = x.permute(0, 2, 1).contiguous()
|
81 |
+
x = x.view(-1, x.shape[-1])
|
82 |
+
return x
|
83 |
+
|
84 |
+
def quantize(self, x):
|
85 |
+
# Calculate latent code x_l
|
86 |
+
k_w = self.codebook.t()
|
87 |
+
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
|
88 |
+
keepdim=True) # (N * L, b)
|
89 |
+
_, code_idx = torch.min(distance, dim=-1)
|
90 |
+
return code_idx
|
91 |
+
|
92 |
+
def dequantize(self, code_idx):
|
93 |
+
x = F.embedding(code_idx, self.codebook)
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
N, width, T = x.shape
|
99 |
+
|
100 |
+
# Preprocess
|
101 |
+
x = self.preprocess(x)
|
102 |
+
|
103 |
+
# Init codebook if not inited
|
104 |
+
if self.training and not self.init:
|
105 |
+
self.init_codebook(x)
|
106 |
+
|
107 |
+
# quantize and dequantize through bottleneck
|
108 |
+
code_idx = self.quantize(x)
|
109 |
+
x_d = self.dequantize(code_idx)
|
110 |
+
|
111 |
+
# Update embeddings
|
112 |
+
if self.training:
|
113 |
+
perplexity = self.update_codebook(x, code_idx)
|
114 |
+
else :
|
115 |
+
perplexity = self.compute_perplexity(code_idx)
|
116 |
+
|
117 |
+
# Loss
|
118 |
+
commit_loss = F.mse_loss(x, x_d.detach())
|
119 |
+
|
120 |
+
# Passthrough
|
121 |
+
x_d = x + (x_d - x).detach()
|
122 |
+
|
123 |
+
# Postprocess
|
124 |
+
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
125 |
+
|
126 |
+
return x_d, commit_loss, perplexity
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
class Quantizer(nn.Module):
|
131 |
+
def __init__(self, n_e, e_dim, beta):
|
132 |
+
super(Quantizer, self).__init__()
|
133 |
+
|
134 |
+
self.e_dim = e_dim
|
135 |
+
self.n_e = n_e
|
136 |
+
self.beta = beta
|
137 |
+
|
138 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
139 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
140 |
+
|
141 |
+
def forward(self, z):
|
142 |
+
|
143 |
+
N, width, T = z.shape
|
144 |
+
z = self.preprocess(z)
|
145 |
+
assert z.shape[-1] == self.e_dim
|
146 |
+
z_flattened = z.contiguous().view(-1, self.e_dim)
|
147 |
+
|
148 |
+
# B x V
|
149 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
150 |
+
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
151 |
+
torch.matmul(z_flattened, self.embedding.weight.t())
|
152 |
+
# B x 1
|
153 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
154 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
155 |
+
|
156 |
+
# compute loss for embedding
|
157 |
+
loss = torch.mean((z_q - z.detach())**2) + self.beta * \
|
158 |
+
torch.mean((z_q.detach() - z)**2)
|
159 |
+
|
160 |
+
# preserve gradients
|
161 |
+
z_q = z + (z_q - z).detach()
|
162 |
+
z_q = z_q.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
163 |
+
|
164 |
+
min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
|
165 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
166 |
+
perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
|
167 |
+
return z_q, loss, perplexity
|
168 |
+
|
169 |
+
def quantize(self, z):
|
170 |
+
|
171 |
+
assert z.shape[-1] == self.e_dim
|
172 |
+
|
173 |
+
# B x V
|
174 |
+
d = torch.sum(z ** 2, dim=1, keepdim=True) + \
|
175 |
+
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
|
176 |
+
torch.matmul(z, self.embedding.weight.t())
|
177 |
+
# B x 1
|
178 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
179 |
+
return min_encoding_indices
|
180 |
+
|
181 |
+
def dequantize(self, indices):
|
182 |
+
|
183 |
+
index_flattened = indices.view(-1)
|
184 |
+
z_q = self.embedding(index_flattened)
|
185 |
+
z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
|
186 |
+
return z_q
|
187 |
+
|
188 |
+
def preprocess(self, x):
|
189 |
+
# NCT -> NTC -> [NT, C]
|
190 |
+
x = x.permute(0, 2, 1).contiguous()
|
191 |
+
x = x.view(-1, x.shape[-1])
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
class QuantizeReset(nn.Module):
|
197 |
+
def __init__(self, nb_code, code_dim, args):
|
198 |
+
super().__init__()
|
199 |
+
self.nb_code = nb_code
|
200 |
+
self.code_dim = code_dim
|
201 |
+
self.reset_codebook()
|
202 |
+
self.codebook = nn.Parameter(torch.randn(nb_code, code_dim))
|
203 |
+
|
204 |
+
def reset_codebook(self):
|
205 |
+
self.init = False
|
206 |
+
self.code_count = None
|
207 |
+
|
208 |
+
def _tile(self, x):
|
209 |
+
nb_code_x, code_dim = x.shape
|
210 |
+
if nb_code_x < self.nb_code:
|
211 |
+
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
|
212 |
+
std = 0.01 / np.sqrt(code_dim)
|
213 |
+
out = x.repeat(n_repeats, 1)
|
214 |
+
out = out + torch.randn_like(out) * std
|
215 |
+
else :
|
216 |
+
out = x
|
217 |
+
return out
|
218 |
+
|
219 |
+
def init_codebook(self, x):
|
220 |
+
out = self._tile(x)
|
221 |
+
self.codebook = nn.Parameter(out[:self.nb_code])
|
222 |
+
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
|
223 |
+
self.init = True
|
224 |
+
|
225 |
+
@torch.no_grad()
|
226 |
+
def compute_perplexity(self, code_idx) :
|
227 |
+
# Calculate new centres
|
228 |
+
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
|
229 |
+
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
|
230 |
+
|
231 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
232 |
+
prob = code_count / torch.sum(code_count)
|
233 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
234 |
+
return perplexity
|
235 |
+
|
236 |
+
def update_codebook(self, x, code_idx):
|
237 |
+
|
238 |
+
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
|
239 |
+
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
|
240 |
+
|
241 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
242 |
+
|
243 |
+
out = self._tile(x)
|
244 |
+
code_rand = out[:self.nb_code]
|
245 |
+
|
246 |
+
# Update centres
|
247 |
+
self.code_count = code_count # nb_code
|
248 |
+
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
|
249 |
+
|
250 |
+
self.codebook.data = usage * self.codebook.data + (1 - usage) * code_rand
|
251 |
+
prob = code_count / torch.sum(code_count)
|
252 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
253 |
+
|
254 |
+
|
255 |
+
return perplexity
|
256 |
+
|
257 |
+
def preprocess(self, x):
|
258 |
+
# NCT -> NTC -> [NT, C]
|
259 |
+
x = x.permute(0, 2, 1).contiguous()
|
260 |
+
x = x.view(-1, x.shape[-1])
|
261 |
+
return x
|
262 |
+
|
263 |
+
def quantize(self, x):
|
264 |
+
# Calculate latent code x_l
|
265 |
+
k_w = self.codebook.t()
|
266 |
+
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
|
267 |
+
keepdim=True) # (N * L, b)
|
268 |
+
_, code_idx = torch.min(distance, dim=-1)
|
269 |
+
return code_idx
|
270 |
+
|
271 |
+
def dequantize(self, code_idx):
|
272 |
+
x = F.embedding(code_idx, self.codebook)
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
def forward(self, x):
|
277 |
+
N, width, T = x.shape
|
278 |
+
# Preprocess
|
279 |
+
x = self.preprocess(x)
|
280 |
+
# Init codebook if not inited
|
281 |
+
if self.training and not self.init:
|
282 |
+
self.init_codebook(x)
|
283 |
+
# quantize and dequantize through bottleneck
|
284 |
+
code_idx = self.quantize(x)
|
285 |
+
x_d = self.dequantize(code_idx)
|
286 |
+
# Update embeddings
|
287 |
+
if self.training:
|
288 |
+
perplexity = self.update_codebook(x, code_idx)
|
289 |
+
else :
|
290 |
+
perplexity = self.compute_perplexity(code_idx)
|
291 |
+
|
292 |
+
# Loss
|
293 |
+
commit_loss = F.mse_loss(x, x_d.detach())
|
294 |
+
|
295 |
+
# Passthrough
|
296 |
+
x_d = x + (x_d - x).detach()
|
297 |
+
|
298 |
+
# Postprocess
|
299 |
+
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
300 |
+
|
301 |
+
return x_d, commit_loss, perplexity
|
302 |
+
|
303 |
+
class QuantizeEMA(nn.Module):
|
304 |
+
def __init__(self, nb_code, code_dim, args):
|
305 |
+
super().__init__()
|
306 |
+
self.nb_code = nb_code
|
307 |
+
self.code_dim = code_dim
|
308 |
+
self.mu = 0.99
|
309 |
+
self.reset_codebook()
|
310 |
+
|
311 |
+
def reset_codebook(self):
|
312 |
+
self.init = False
|
313 |
+
self.code_sum = None
|
314 |
+
self.code_count = None
|
315 |
+
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
|
316 |
+
|
317 |
+
def _tile(self, x):
|
318 |
+
nb_code_x, code_dim = x.shape
|
319 |
+
if nb_code_x < self.nb_code:
|
320 |
+
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
|
321 |
+
std = 0.01 / np.sqrt(code_dim)
|
322 |
+
out = x.repeat(n_repeats, 1)
|
323 |
+
out = out + torch.randn_like(out) * std
|
324 |
+
else :
|
325 |
+
out = x
|
326 |
+
return out
|
327 |
+
|
328 |
+
def init_codebook(self, x):
|
329 |
+
out = self._tile(x)
|
330 |
+
self.codebook = out[:self.nb_code]
|
331 |
+
self.code_sum = self.codebook.clone()
|
332 |
+
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
|
333 |
+
self.init = True
|
334 |
+
|
335 |
+
@torch.no_grad()
|
336 |
+
def compute_perplexity(self, code_idx) :
|
337 |
+
# Calculate new centres
|
338 |
+
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
|
339 |
+
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
|
340 |
+
|
341 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
342 |
+
prob = code_count / torch.sum(code_count)
|
343 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
344 |
+
return perplexity
|
345 |
+
|
346 |
+
@torch.no_grad()
|
347 |
+
def update_codebook(self, x, code_idx):
|
348 |
+
|
349 |
+
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
|
350 |
+
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
|
351 |
+
|
352 |
+
code_sum = torch.matmul(code_onehot, x) # nb_code, w
|
353 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
354 |
+
|
355 |
+
# Update centres
|
356 |
+
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
|
357 |
+
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
|
358 |
+
|
359 |
+
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
|
360 |
+
|
361 |
+
self.codebook = code_update
|
362 |
+
prob = code_count / torch.sum(code_count)
|
363 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
364 |
+
|
365 |
+
return perplexity
|
366 |
+
|
367 |
+
def preprocess(self, x):
|
368 |
+
# NCT -> NTC -> [NT, C]
|
369 |
+
x = x.permute(0, 2, 1).contiguous()
|
370 |
+
x = x.view(-1, x.shape[-1])
|
371 |
+
return x
|
372 |
+
|
373 |
+
def quantize(self, x):
|
374 |
+
# Calculate latent code x_l
|
375 |
+
k_w = self.codebook.t()
|
376 |
+
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
|
377 |
+
keepdim=True) # (N * L, b)
|
378 |
+
_, code_idx = torch.min(distance, dim=-1)
|
379 |
+
return code_idx
|
380 |
+
|
381 |
+
def dequantize(self, code_idx):
|
382 |
+
x = F.embedding(code_idx, self.codebook)
|
383 |
+
return x
|
384 |
+
|
385 |
+
|
386 |
+
def forward(self, x):
|
387 |
+
N, width, T = x.shape
|
388 |
+
|
389 |
+
# Preprocess
|
390 |
+
x = self.preprocess(x)
|
391 |
+
|
392 |
+
# Init codebook if not inited
|
393 |
+
if self.training and not self.init:
|
394 |
+
self.init_codebook(x)
|
395 |
+
|
396 |
+
# quantize and dequantize through bottleneck
|
397 |
+
code_idx = self.quantize(x)
|
398 |
+
x_d = self.dequantize(code_idx)
|
399 |
+
|
400 |
+
# Update embeddings
|
401 |
+
if self.training:
|
402 |
+
perplexity = self.update_codebook(x, code_idx)
|
403 |
+
else :
|
404 |
+
perplexity = self.compute_perplexity(code_idx)
|
405 |
+
|
406 |
+
# Loss
|
407 |
+
commit_loss = F.mse_loss(x, x_d.detach())
|
408 |
+
|
409 |
+
# Passthrough
|
410 |
+
x_d = x + (x_d - x).detach()
|
411 |
+
|
412 |
+
# Postprocess
|
413 |
+
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
414 |
+
|
415 |
+
return x_d, commit_loss, perplexity
|
VQ-Trans/models/resnet.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class nonlinearity(nn.Module):
|
5 |
+
def __init__(self):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
def forward(self, x):
|
9 |
+
# swish
|
10 |
+
return x * torch.sigmoid(x)
|
11 |
+
|
12 |
+
class ResConv1DBlock(nn.Module):
|
13 |
+
def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
|
14 |
+
super().__init__()
|
15 |
+
padding = dilation
|
16 |
+
self.norm = norm
|
17 |
+
if norm == "LN":
|
18 |
+
self.norm1 = nn.LayerNorm(n_in)
|
19 |
+
self.norm2 = nn.LayerNorm(n_in)
|
20 |
+
elif norm == "GN":
|
21 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
|
22 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
|
23 |
+
elif norm == "BN":
|
24 |
+
self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
|
25 |
+
self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
|
26 |
+
|
27 |
+
else:
|
28 |
+
self.norm1 = nn.Identity()
|
29 |
+
self.norm2 = nn.Identity()
|
30 |
+
|
31 |
+
if activation == "relu":
|
32 |
+
self.activation1 = nn.ReLU()
|
33 |
+
self.activation2 = nn.ReLU()
|
34 |
+
|
35 |
+
elif activation == "silu":
|
36 |
+
self.activation1 = nonlinearity()
|
37 |
+
self.activation2 = nonlinearity()
|
38 |
+
|
39 |
+
elif activation == "gelu":
|
40 |
+
self.activation1 = nn.GELU()
|
41 |
+
self.activation2 = nn.GELU()
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
|
46 |
+
self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0,)
|
47 |
+
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x_orig = x
|
51 |
+
if self.norm == "LN":
|
52 |
+
x = self.norm1(x.transpose(-2, -1))
|
53 |
+
x = self.activation1(x.transpose(-2, -1))
|
54 |
+
else:
|
55 |
+
x = self.norm1(x)
|
56 |
+
x = self.activation1(x)
|
57 |
+
|
58 |
+
x = self.conv1(x)
|
59 |
+
|
60 |
+
if self.norm == "LN":
|
61 |
+
x = self.norm2(x.transpose(-2, -1))
|
62 |
+
x = self.activation2(x.transpose(-2, -1))
|
63 |
+
else:
|
64 |
+
x = self.norm2(x)
|
65 |
+
x = self.activation2(x)
|
66 |
+
|
67 |
+
x = self.conv2(x)
|
68 |
+
x = x + x_orig
|
69 |
+
return x
|
70 |
+
|
71 |
+
class Resnet1D(nn.Module):
|
72 |
+
def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm) for depth in range(n_depth)]
|
76 |
+
if reverse_dilation:
|
77 |
+
blocks = blocks[::-1]
|
78 |
+
|
79 |
+
self.model = nn.Sequential(*blocks)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return self.model(x)
|
VQ-Trans/models/rotation2xyz.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is based on https://github.com/Mathux/ACTOR.git
|
2 |
+
import torch
|
3 |
+
import utils.rotation_conversions as geometry
|
4 |
+
|
5 |
+
|
6 |
+
from models.smpl import SMPL, JOINTSTYPE_ROOT
|
7 |
+
# from .get_model import JOINTSTYPES
|
8 |
+
JOINTSTYPES = ["a2m", "a2mpl", "smpl", "vibe", "vertices"]
|
9 |
+
|
10 |
+
|
11 |
+
class Rotation2xyz:
|
12 |
+
def __init__(self, device, dataset='amass'):
|
13 |
+
self.device = device
|
14 |
+
self.dataset = dataset
|
15 |
+
self.smpl_model = SMPL().eval().to(device)
|
16 |
+
|
17 |
+
def __call__(self, x, mask, pose_rep, translation, glob,
|
18 |
+
jointstype, vertstrans, betas=None, beta=0,
|
19 |
+
glob_rot=None, get_rotations_back=False, **kwargs):
|
20 |
+
if pose_rep == "xyz":
|
21 |
+
return x
|
22 |
+
|
23 |
+
if mask is None:
|
24 |
+
mask = torch.ones((x.shape[0], x.shape[-1]), dtype=bool, device=x.device)
|
25 |
+
|
26 |
+
if not glob and glob_rot is None:
|
27 |
+
raise TypeError("You must specify global rotation if glob is False")
|
28 |
+
|
29 |
+
if jointstype not in JOINTSTYPES:
|
30 |
+
raise NotImplementedError("This jointstype is not implemented.")
|
31 |
+
|
32 |
+
if translation:
|
33 |
+
x_translations = x[:, -1, :3]
|
34 |
+
x_rotations = x[:, :-1]
|
35 |
+
else:
|
36 |
+
x_rotations = x
|
37 |
+
|
38 |
+
x_rotations = x_rotations.permute(0, 3, 1, 2)
|
39 |
+
nsamples, time, njoints, feats = x_rotations.shape
|
40 |
+
|
41 |
+
# Compute rotations (convert only masked sequences output)
|
42 |
+
if pose_rep == "rotvec":
|
43 |
+
rotations = geometry.axis_angle_to_matrix(x_rotations[mask])
|
44 |
+
elif pose_rep == "rotmat":
|
45 |
+
rotations = x_rotations[mask].view(-1, njoints, 3, 3)
|
46 |
+
elif pose_rep == "rotquat":
|
47 |
+
rotations = geometry.quaternion_to_matrix(x_rotations[mask])
|
48 |
+
elif pose_rep == "rot6d":
|
49 |
+
rotations = geometry.rotation_6d_to_matrix(x_rotations[mask])
|
50 |
+
else:
|
51 |
+
raise NotImplementedError("No geometry for this one.")
|
52 |
+
|
53 |
+
if not glob:
|
54 |
+
global_orient = torch.tensor(glob_rot, device=x.device)
|
55 |
+
global_orient = geometry.axis_angle_to_matrix(global_orient).view(1, 1, 3, 3)
|
56 |
+
global_orient = global_orient.repeat(len(rotations), 1, 1, 1)
|
57 |
+
else:
|
58 |
+
global_orient = rotations[:, 0]
|
59 |
+
rotations = rotations[:, 1:]
|
60 |
+
|
61 |
+
if betas is None:
|
62 |
+
betas = torch.zeros([rotations.shape[0], self.smpl_model.num_betas],
|
63 |
+
dtype=rotations.dtype, device=rotations.device)
|
64 |
+
betas[:, 1] = beta
|
65 |
+
# import ipdb; ipdb.set_trace()
|
66 |
+
out = self.smpl_model(body_pose=rotations, global_orient=global_orient, betas=betas)
|
67 |
+
|
68 |
+
# get the desirable joints
|
69 |
+
joints = out[jointstype]
|
70 |
+
|
71 |
+
x_xyz = torch.empty(nsamples, time, joints.shape[1], 3, device=x.device, dtype=x.dtype)
|
72 |
+
x_xyz[~mask] = 0
|
73 |
+
x_xyz[mask] = joints
|
74 |
+
|
75 |
+
x_xyz = x_xyz.permute(0, 2, 3, 1).contiguous()
|
76 |
+
|
77 |
+
# the first translation root at the origin on the prediction
|
78 |
+
if jointstype != "vertices":
|
79 |
+
rootindex = JOINTSTYPE_ROOT[jointstype]
|
80 |
+
x_xyz = x_xyz - x_xyz[:, [rootindex], :, :]
|
81 |
+
|
82 |
+
if translation and vertstrans:
|
83 |
+
# the first translation root at the origin
|
84 |
+
x_translations = x_translations - x_translations[:, :, [0]]
|
85 |
+
|
86 |
+
# add the translation to all the joints
|
87 |
+
x_xyz = x_xyz + x_translations[:, None, :, :]
|
88 |
+
|
89 |
+
if get_rotations_back:
|
90 |
+
return x_xyz, rotations, global_orient
|
91 |
+
else:
|
92 |
+
return x_xyz
|
VQ-Trans/models/smpl.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is based on https://github.com/Mathux/ACTOR.git
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import contextlib
|
6 |
+
|
7 |
+
from smplx import SMPLLayer as _SMPLLayer
|
8 |
+
from smplx.lbs import vertices2joints
|
9 |
+
|
10 |
+
|
11 |
+
# action2motion_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 24, 38]
|
12 |
+
# change 0 and 8
|
13 |
+
action2motion_joints = [8, 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 21, 24, 38]
|
14 |
+
|
15 |
+
from utils.config import SMPL_MODEL_PATH, JOINT_REGRESSOR_TRAIN_EXTRA
|
16 |
+
|
17 |
+
JOINTSTYPE_ROOT = {"a2m": 0, # action2motion
|
18 |
+
"smpl": 0,
|
19 |
+
"a2mpl": 0, # set(smpl, a2m)
|
20 |
+
"vibe": 8} # 0 is the 8 position: OP MidHip below
|
21 |
+
|
22 |
+
JOINT_MAP = {
|
23 |
+
'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
|
24 |
+
'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
|
25 |
+
'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
|
26 |
+
'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
|
27 |
+
'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
|
28 |
+
'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
|
29 |
+
'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
|
30 |
+
'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
|
31 |
+
'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
|
32 |
+
'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
|
33 |
+
'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
|
34 |
+
'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
|
35 |
+
'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
|
36 |
+
'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
|
37 |
+
'Spine (H36M)': 51, 'Jaw (H36M)': 52,
|
38 |
+
'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
|
39 |
+
'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
|
40 |
+
}
|
41 |
+
|
42 |
+
JOINT_NAMES = [
|
43 |
+
'OP Nose', 'OP Neck', 'OP RShoulder',
|
44 |
+
'OP RElbow', 'OP RWrist', 'OP LShoulder',
|
45 |
+
'OP LElbow', 'OP LWrist', 'OP MidHip',
|
46 |
+
'OP RHip', 'OP RKnee', 'OP RAnkle',
|
47 |
+
'OP LHip', 'OP LKnee', 'OP LAnkle',
|
48 |
+
'OP REye', 'OP LEye', 'OP REar',
|
49 |
+
'OP LEar', 'OP LBigToe', 'OP LSmallToe',
|
50 |
+
'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
|
51 |
+
'Right Ankle', 'Right Knee', 'Right Hip',
|
52 |
+
'Left Hip', 'Left Knee', 'Left Ankle',
|
53 |
+
'Right Wrist', 'Right Elbow', 'Right Shoulder',
|
54 |
+
'Left Shoulder', 'Left Elbow', 'Left Wrist',
|
55 |
+
'Neck (LSP)', 'Top of Head (LSP)',
|
56 |
+
'Pelvis (MPII)', 'Thorax (MPII)',
|
57 |
+
'Spine (H36M)', 'Jaw (H36M)',
|
58 |
+
'Head (H36M)', 'Nose', 'Left Eye',
|
59 |
+
'Right Eye', 'Left Ear', 'Right Ear'
|
60 |
+
]
|
61 |
+
|
62 |
+
|
63 |
+
# adapted from VIBE/SPIN to output smpl_joints, vibe joints and action2motion joints
|
64 |
+
class SMPL(_SMPLLayer):
|
65 |
+
""" Extension of the official SMPL implementation to support more joints """
|
66 |
+
|
67 |
+
def __init__(self, model_path=SMPL_MODEL_PATH, **kwargs):
|
68 |
+
kwargs["model_path"] = model_path
|
69 |
+
|
70 |
+
# remove the verbosity for the 10-shapes beta parameters
|
71 |
+
with contextlib.redirect_stdout(None):
|
72 |
+
super(SMPL, self).__init__(**kwargs)
|
73 |
+
|
74 |
+
J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
|
75 |
+
self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
|
76 |
+
vibe_indexes = np.array([JOINT_MAP[i] for i in JOINT_NAMES])
|
77 |
+
a2m_indexes = vibe_indexes[action2motion_joints]
|
78 |
+
smpl_indexes = np.arange(24)
|
79 |
+
a2mpl_indexes = np.unique(np.r_[smpl_indexes, a2m_indexes])
|
80 |
+
|
81 |
+
self.maps = {"vibe": vibe_indexes,
|
82 |
+
"a2m": a2m_indexes,
|
83 |
+
"smpl": smpl_indexes,
|
84 |
+
"a2mpl": a2mpl_indexes}
|
85 |
+
|
86 |
+
def forward(self, *args, **kwargs):
|
87 |
+
smpl_output = super(SMPL, self).forward(*args, **kwargs)
|
88 |
+
|
89 |
+
extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
|
90 |
+
all_joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
|
91 |
+
|
92 |
+
output = {"vertices": smpl_output.vertices}
|
93 |
+
|
94 |
+
for joinstype, indexes in self.maps.items():
|
95 |
+
output[joinstype] = all_joints[:, indexes]
|
96 |
+
|
97 |
+
return output
|
VQ-Trans/models/t2m_trans.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.distributions import Categorical
|
6 |
+
import models.pos_encoding as pos_encoding
|
7 |
+
|
8 |
+
class Text2Motion_Transformer(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self,
|
11 |
+
num_vq=1024,
|
12 |
+
embed_dim=512,
|
13 |
+
clip_dim=512,
|
14 |
+
block_size=16,
|
15 |
+
num_layers=2,
|
16 |
+
n_head=8,
|
17 |
+
drop_out_rate=0.1,
|
18 |
+
fc_rate=4):
|
19 |
+
super().__init__()
|
20 |
+
self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
|
21 |
+
self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
|
22 |
+
self.block_size = block_size
|
23 |
+
self.num_vq = num_vq
|
24 |
+
|
25 |
+
def get_block_size(self):
|
26 |
+
return self.block_size
|
27 |
+
|
28 |
+
def forward(self, idxs, clip_feature):
|
29 |
+
feat = self.trans_base(idxs, clip_feature)
|
30 |
+
logits = self.trans_head(feat)
|
31 |
+
return logits
|
32 |
+
|
33 |
+
def sample(self, clip_feature, if_categorial=False):
|
34 |
+
for k in range(self.block_size):
|
35 |
+
if k == 0:
|
36 |
+
x = []
|
37 |
+
else:
|
38 |
+
x = xs
|
39 |
+
logits = self.forward(x, clip_feature)
|
40 |
+
logits = logits[:, -1, :]
|
41 |
+
probs = F.softmax(logits, dim=-1)
|
42 |
+
if if_categorial:
|
43 |
+
dist = Categorical(probs)
|
44 |
+
idx = dist.sample()
|
45 |
+
if idx == self.num_vq:
|
46 |
+
break
|
47 |
+
idx = idx.unsqueeze(-1)
|
48 |
+
else:
|
49 |
+
_, idx = torch.topk(probs, k=1, dim=-1)
|
50 |
+
if idx[0] == self.num_vq:
|
51 |
+
break
|
52 |
+
# append to the sequence and continue
|
53 |
+
if k == 0:
|
54 |
+
xs = idx
|
55 |
+
else:
|
56 |
+
xs = torch.cat((xs, idx), dim=1)
|
57 |
+
|
58 |
+
if k == self.block_size - 1:
|
59 |
+
return xs[:, :-1]
|
60 |
+
return xs
|
61 |
+
|
62 |
+
class CausalCrossConditionalSelfAttention(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
|
65 |
+
super().__init__()
|
66 |
+
assert embed_dim % 8 == 0
|
67 |
+
# key, query, value projections for all heads
|
68 |
+
self.key = nn.Linear(embed_dim, embed_dim)
|
69 |
+
self.query = nn.Linear(embed_dim, embed_dim)
|
70 |
+
self.value = nn.Linear(embed_dim, embed_dim)
|
71 |
+
|
72 |
+
self.attn_drop = nn.Dropout(drop_out_rate)
|
73 |
+
self.resid_drop = nn.Dropout(drop_out_rate)
|
74 |
+
|
75 |
+
self.proj = nn.Linear(embed_dim, embed_dim)
|
76 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
77 |
+
self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
|
78 |
+
self.n_head = n_head
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
B, T, C = x.size()
|
82 |
+
|
83 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
84 |
+
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
85 |
+
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
86 |
+
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
87 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
88 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
89 |
+
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
|
90 |
+
att = F.softmax(att, dim=-1)
|
91 |
+
att = self.attn_drop(att)
|
92 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
93 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
94 |
+
|
95 |
+
# output projection
|
96 |
+
y = self.resid_drop(self.proj(y))
|
97 |
+
return y
|
98 |
+
|
99 |
+
class Block(nn.Module):
|
100 |
+
|
101 |
+
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
|
102 |
+
super().__init__()
|
103 |
+
self.ln1 = nn.LayerNorm(embed_dim)
|
104 |
+
self.ln2 = nn.LayerNorm(embed_dim)
|
105 |
+
self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
|
106 |
+
self.mlp = nn.Sequential(
|
107 |
+
nn.Linear(embed_dim, fc_rate * embed_dim),
|
108 |
+
nn.GELU(),
|
109 |
+
nn.Linear(fc_rate * embed_dim, embed_dim),
|
110 |
+
nn.Dropout(drop_out_rate),
|
111 |
+
)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
x = x + self.attn(self.ln1(x))
|
115 |
+
x = x + self.mlp(self.ln2(x))
|
116 |
+
return x
|
117 |
+
|
118 |
+
class CrossCondTransBase(nn.Module):
|
119 |
+
|
120 |
+
def __init__(self,
|
121 |
+
num_vq=1024,
|
122 |
+
embed_dim=512,
|
123 |
+
clip_dim=512,
|
124 |
+
block_size=16,
|
125 |
+
num_layers=2,
|
126 |
+
n_head=8,
|
127 |
+
drop_out_rate=0.1,
|
128 |
+
fc_rate=4):
|
129 |
+
super().__init__()
|
130 |
+
self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
|
131 |
+
self.cond_emb = nn.Linear(clip_dim, embed_dim)
|
132 |
+
self.pos_embedding = nn.Embedding(block_size, embed_dim)
|
133 |
+
self.drop = nn.Dropout(drop_out_rate)
|
134 |
+
# transformer block
|
135 |
+
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
|
136 |
+
self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
|
137 |
+
|
138 |
+
self.block_size = block_size
|
139 |
+
|
140 |
+
self.apply(self._init_weights)
|
141 |
+
|
142 |
+
def get_block_size(self):
|
143 |
+
return self.block_size
|
144 |
+
|
145 |
+
def _init_weights(self, module):
|
146 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
147 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
148 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
149 |
+
module.bias.data.zero_()
|
150 |
+
elif isinstance(module, nn.LayerNorm):
|
151 |
+
module.bias.data.zero_()
|
152 |
+
module.weight.data.fill_(1.0)
|
153 |
+
|
154 |
+
def forward(self, idx, clip_feature):
|
155 |
+
if len(idx) == 0:
|
156 |
+
token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
|
157 |
+
else:
|
158 |
+
b, t = idx.size()
|
159 |
+
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
|
160 |
+
# forward the Trans model
|
161 |
+
token_embeddings = self.tok_emb(idx)
|
162 |
+
token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
|
163 |
+
|
164 |
+
x = self.pos_embed(token_embeddings)
|
165 |
+
x = self.blocks(x)
|
166 |
+
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class CrossCondTransHead(nn.Module):
|
171 |
+
|
172 |
+
def __init__(self,
|
173 |
+
num_vq=1024,
|
174 |
+
embed_dim=512,
|
175 |
+
block_size=16,
|
176 |
+
num_layers=2,
|
177 |
+
n_head=8,
|
178 |
+
drop_out_rate=0.1,
|
179 |
+
fc_rate=4):
|
180 |
+
super().__init__()
|
181 |
+
|
182 |
+
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
|
183 |
+
self.ln_f = nn.LayerNorm(embed_dim)
|
184 |
+
self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
|
185 |
+
self.block_size = block_size
|
186 |
+
|
187 |
+
self.apply(self._init_weights)
|
188 |
+
|
189 |
+
def get_block_size(self):
|
190 |
+
return self.block_size
|
191 |
+
|
192 |
+
def _init_weights(self, module):
|
193 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
194 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
195 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
196 |
+
module.bias.data.zero_()
|
197 |
+
elif isinstance(module, nn.LayerNorm):
|
198 |
+
module.bias.data.zero_()
|
199 |
+
module.weight.data.fill_(1.0)
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
x = self.blocks(x)
|
203 |
+
x = self.ln_f(x)
|
204 |
+
logits = self.head(x)
|
205 |
+
return logits
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
VQ-Trans/models/vqvae.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.encdec import Encoder, Decoder
|
3 |
+
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
|
4 |
+
|
5 |
+
|
6 |
+
class VQVAE_251(nn.Module):
|
7 |
+
def __init__(self,
|
8 |
+
args,
|
9 |
+
nb_code=1024,
|
10 |
+
code_dim=512,
|
11 |
+
output_emb_width=512,
|
12 |
+
down_t=3,
|
13 |
+
stride_t=2,
|
14 |
+
width=512,
|
15 |
+
depth=3,
|
16 |
+
dilation_growth_rate=3,
|
17 |
+
activation='relu',
|
18 |
+
norm=None):
|
19 |
+
|
20 |
+
super().__init__()
|
21 |
+
self.code_dim = code_dim
|
22 |
+
self.num_code = nb_code
|
23 |
+
self.quant = args.quantizer
|
24 |
+
self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
25 |
+
self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
26 |
+
if args.quantizer == "ema_reset":
|
27 |
+
self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
|
28 |
+
elif args.quantizer == "orig":
|
29 |
+
self.quantizer = Quantizer(nb_code, code_dim, 1.0)
|
30 |
+
elif args.quantizer == "ema":
|
31 |
+
self.quantizer = QuantizeEMA(nb_code, code_dim, args)
|
32 |
+
elif args.quantizer == "reset":
|
33 |
+
self.quantizer = QuantizeReset(nb_code, code_dim, args)
|
34 |
+
|
35 |
+
|
36 |
+
def preprocess(self, x):
|
37 |
+
# (bs, T, Jx3) -> (bs, Jx3, T)
|
38 |
+
x = x.permute(0,2,1).float()
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
def postprocess(self, x):
|
43 |
+
# (bs, Jx3, T) -> (bs, T, Jx3)
|
44 |
+
x = x.permute(0,2,1)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
def encode(self, x):
|
49 |
+
N, T, _ = x.shape
|
50 |
+
x_in = self.preprocess(x)
|
51 |
+
x_encoder = self.encoder(x_in)
|
52 |
+
x_encoder = self.postprocess(x_encoder)
|
53 |
+
x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C)
|
54 |
+
code_idx = self.quantizer.quantize(x_encoder)
|
55 |
+
code_idx = code_idx.view(N, -1)
|
56 |
+
return code_idx
|
57 |
+
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
|
61 |
+
x_in = self.preprocess(x)
|
62 |
+
# Encode
|
63 |
+
x_encoder = self.encoder(x_in)
|
64 |
+
|
65 |
+
## quantization
|
66 |
+
x_quantized, loss, perplexity = self.quantizer(x_encoder)
|
67 |
+
|
68 |
+
## decoder
|
69 |
+
x_decoder = self.decoder(x_quantized)
|
70 |
+
x_out = self.postprocess(x_decoder)
|
71 |
+
return x_out, loss, perplexity
|
72 |
+
|
73 |
+
|
74 |
+
def forward_decoder(self, x):
|
75 |
+
x_d = self.quantizer.dequantize(x)
|
76 |
+
x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
|
77 |
+
|
78 |
+
# decoder
|
79 |
+
x_decoder = self.decoder(x_d)
|
80 |
+
x_out = self.postprocess(x_decoder)
|
81 |
+
return x_out
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
class HumanVQVAE(nn.Module):
|
86 |
+
def __init__(self,
|
87 |
+
args,
|
88 |
+
nb_code=512,
|
89 |
+
code_dim=512,
|
90 |
+
output_emb_width=512,
|
91 |
+
down_t=3,
|
92 |
+
stride_t=2,
|
93 |
+
width=512,
|
94 |
+
depth=3,
|
95 |
+
dilation_growth_rate=3,
|
96 |
+
activation='relu',
|
97 |
+
norm=None):
|
98 |
+
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.nb_joints = 21 if args.dataname == 'kit' else 22
|
102 |
+
self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
103 |
+
|
104 |
+
def encode(self, x):
|
105 |
+
b, t, c = x.size()
|
106 |
+
quants = self.vqvae.encode(x) # (N, T)
|
107 |
+
return quants
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
|
111 |
+
x_out, loss, perplexity = self.vqvae(x)
|
112 |
+
|
113 |
+
return x_out, loss, perplexity
|
114 |
+
|
115 |
+
def forward_decoder(self, x):
|
116 |
+
x_out = self.vqvae.forward_decoder(x)
|
117 |
+
return x_out
|
118 |
+
|
VQ-Trans/options/get_eval_option.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import Namespace
|
2 |
+
import re
|
3 |
+
from os.path import join as pjoin
|
4 |
+
|
5 |
+
|
6 |
+
def is_float(numStr):
|
7 |
+
flag = False
|
8 |
+
numStr = str(numStr).strip().lstrip('-').lstrip('+')
|
9 |
+
try:
|
10 |
+
reg = re.compile(r'^[-+]?[0-9]+\.[0-9]+$')
|
11 |
+
res = reg.match(str(numStr))
|
12 |
+
if res:
|
13 |
+
flag = True
|
14 |
+
except Exception as ex:
|
15 |
+
print("is_float() - error: " + str(ex))
|
16 |
+
return flag
|
17 |
+
|
18 |
+
|
19 |
+
def is_number(numStr):
|
20 |
+
flag = False
|
21 |
+
numStr = str(numStr).strip().lstrip('-').lstrip('+')
|
22 |
+
if str(numStr).isdigit():
|
23 |
+
flag = True
|
24 |
+
return flag
|
25 |
+
|
26 |
+
|
27 |
+
def get_opt(opt_path, device):
|
28 |
+
opt = Namespace()
|
29 |
+
opt_dict = vars(opt)
|
30 |
+
|
31 |
+
skip = ('-------------- End ----------------',
|
32 |
+
'------------ Options -------------',
|
33 |
+
'\n')
|
34 |
+
print('Reading', opt_path)
|
35 |
+
with open(opt_path) as f:
|
36 |
+
for line in f:
|
37 |
+
if line.strip() not in skip:
|
38 |
+
# print(line.strip())
|
39 |
+
key, value = line.strip().split(': ')
|
40 |
+
if value in ('True', 'False'):
|
41 |
+
opt_dict[key] = (value == 'True')
|
42 |
+
# print(key, value)
|
43 |
+
elif is_float(value):
|
44 |
+
opt_dict[key] = float(value)
|
45 |
+
elif is_number(value):
|
46 |
+
opt_dict[key] = int(value)
|
47 |
+
else:
|
48 |
+
opt_dict[key] = str(value)
|
49 |
+
|
50 |
+
# print(opt)
|
51 |
+
opt_dict['which_epoch'] = 'finest'
|
52 |
+
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
|
53 |
+
opt.model_dir = pjoin(opt.save_root, 'model')
|
54 |
+
opt.meta_dir = pjoin(opt.save_root, 'meta')
|
55 |
+
|
56 |
+
if opt.dataset_name == 't2m':
|
57 |
+
opt.data_root = './dataset/HumanML3D/'
|
58 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
59 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
60 |
+
opt.joints_num = 22
|
61 |
+
opt.dim_pose = 263
|
62 |
+
opt.max_motion_length = 196
|
63 |
+
opt.max_motion_frame = 196
|
64 |
+
opt.max_motion_token = 55
|
65 |
+
elif opt.dataset_name == 'kit':
|
66 |
+
opt.data_root = './dataset/KIT-ML/'
|
67 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
68 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
69 |
+
opt.joints_num = 21
|
70 |
+
opt.dim_pose = 251
|
71 |
+
opt.max_motion_length = 196
|
72 |
+
opt.max_motion_frame = 196
|
73 |
+
opt.max_motion_token = 55
|
74 |
+
else:
|
75 |
+
raise KeyError('Dataset not recognized')
|
76 |
+
|
77 |
+
opt.dim_word = 300
|
78 |
+
opt.num_classes = 200 // opt.unit_length
|
79 |
+
opt.is_train = False
|
80 |
+
opt.is_continue = False
|
81 |
+
opt.device = device
|
82 |
+
|
83 |
+
return opt
|
VQ-Trans/options/option_transformer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
def get_args_parser():
|
4 |
+
parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for Amass',
|
5 |
+
add_help=True,
|
6 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
7 |
+
|
8 |
+
## dataloader
|
9 |
+
|
10 |
+
parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
|
11 |
+
parser.add_argument('--batch-size', default=128, type=int, help='batch size')
|
12 |
+
parser.add_argument('--fps', default=[20], nargs="+", type=int, help='frames per second')
|
13 |
+
parser.add_argument('--seq-len', type=int, default=64, help='training motion length')
|
14 |
+
|
15 |
+
## optimization
|
16 |
+
parser.add_argument('--total-iter', default=100000, type=int, help='number of total iterations to run')
|
17 |
+
parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
|
18 |
+
parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
|
19 |
+
parser.add_argument('--lr-scheduler', default=[60000], nargs="+", type=int, help="learning rate schedule (iterations)")
|
20 |
+
parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
|
21 |
+
|
22 |
+
parser.add_argument('--weight-decay', default=1e-6, type=float, help='weight decay')
|
23 |
+
parser.add_argument('--decay-option',default='all', type=str, choices=['all', 'noVQ'], help='disable weight decay on codebook')
|
24 |
+
parser.add_argument('--optimizer',default='adamw', type=str, choices=['adam', 'adamw'], help='disable weight decay on codebook')
|
25 |
+
|
26 |
+
## vqvae arch
|
27 |
+
parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
|
28 |
+
parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
|
29 |
+
parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
|
30 |
+
parser.add_argument("--down-t", type=int, default=3, help="downsampling rate")
|
31 |
+
parser.add_argument("--stride-t", type=int, default=2, help="stride size")
|
32 |
+
parser.add_argument("--width", type=int, default=512, help="width of the network")
|
33 |
+
parser.add_argument("--depth", type=int, default=3, help="depth of the network")
|
34 |
+
parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
|
35 |
+
parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
|
36 |
+
parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
|
37 |
+
|
38 |
+
## gpt arch
|
39 |
+
parser.add_argument("--block-size", type=int, default=25, help="seq len")
|
40 |
+
parser.add_argument("--embed-dim-gpt", type=int, default=512, help="embedding dimension")
|
41 |
+
parser.add_argument("--clip-dim", type=int, default=512, help="latent dimension in the clip feature")
|
42 |
+
parser.add_argument("--num-layers", type=int, default=2, help="nb of transformer layers")
|
43 |
+
parser.add_argument("--n-head-gpt", type=int, default=8, help="nb of heads")
|
44 |
+
parser.add_argument("--ff-rate", type=int, default=4, help="feedforward size")
|
45 |
+
parser.add_argument("--drop-out-rate", type=float, default=0.1, help="dropout ratio in the pos encoding")
|
46 |
+
|
47 |
+
## quantizer
|
48 |
+
parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
|
49 |
+
parser.add_argument('--quantbeta', type=float, default=1.0, help='dataset directory')
|
50 |
+
|
51 |
+
## resume
|
52 |
+
parser.add_argument("--resume-pth", type=str, default=None, help='resume vq pth')
|
53 |
+
parser.add_argument("--resume-trans", type=str, default=None, help='resume gpt pth')
|
54 |
+
|
55 |
+
|
56 |
+
## output directory
|
57 |
+
parser.add_argument('--out-dir', type=str, default='output_GPT_Final/', help='output directory')
|
58 |
+
parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
|
59 |
+
parser.add_argument('--vq-name', type=str, default='exp_debug', help='name of the generated dataset .npy, will create a file inside out-dir')
|
60 |
+
## other
|
61 |
+
parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
|
62 |
+
parser.add_argument('--eval-iter', default=5000, type=int, help='evaluation frequency')
|
63 |
+
parser.add_argument('--seed', default=123, type=int, help='seed for initializing training. ')
|
64 |
+
parser.add_argument("--if-maxtest", action='store_true', help="test in max")
|
65 |
+
parser.add_argument('--pkeep', type=float, default=1.0, help='keep rate for gpt training')
|
66 |
+
|
67 |
+
|
68 |
+
return parser.parse_args()
|
VQ-Trans/options/option_vq.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
def get_args_parser():
|
4 |
+
parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for AIST',
|
5 |
+
add_help=True,
|
6 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
7 |
+
|
8 |
+
## dataloader
|
9 |
+
parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
|
10 |
+
parser.add_argument('--batch-size', default=128, type=int, help='batch size')
|
11 |
+
parser.add_argument('--window-size', type=int, default=64, help='training motion length')
|
12 |
+
|
13 |
+
## optimization
|
14 |
+
parser.add_argument('--total-iter', default=200000, type=int, help='number of total iterations to run')
|
15 |
+
parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
|
16 |
+
parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
|
17 |
+
parser.add_argument('--lr-scheduler', default=[50000, 400000], nargs="+", type=int, help="learning rate schedule (iterations)")
|
18 |
+
parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
|
19 |
+
|
20 |
+
parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
|
21 |
+
parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss")
|
22 |
+
parser.add_argument('--loss-vel', type=float, default=0.1, help='hyper-parameter for the velocity loss')
|
23 |
+
parser.add_argument('--recons-loss', type=str, default='l2', help='reconstruction loss')
|
24 |
+
|
25 |
+
## vqvae arch
|
26 |
+
parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
|
27 |
+
parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
|
28 |
+
parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
|
29 |
+
parser.add_argument("--down-t", type=int, default=2, help="downsampling rate")
|
30 |
+
parser.add_argument("--stride-t", type=int, default=2, help="stride size")
|
31 |
+
parser.add_argument("--width", type=int, default=512, help="width of the network")
|
32 |
+
parser.add_argument("--depth", type=int, default=3, help="depth of the network")
|
33 |
+
parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
|
34 |
+
parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
|
35 |
+
parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
|
36 |
+
parser.add_argument('--vq-norm', type=str, default=None, help='dataset directory')
|
37 |
+
|
38 |
+
## quantizer
|
39 |
+
parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
|
40 |
+
parser.add_argument('--beta', type=float, default=1.0, help='commitment loss in standard VQ')
|
41 |
+
|
42 |
+
## resume
|
43 |
+
parser.add_argument("--resume-pth", type=str, default=None, help='resume pth for VQ')
|
44 |
+
parser.add_argument("--resume-gpt", type=str, default=None, help='resume pth for GPT')
|
45 |
+
|
46 |
+
|
47 |
+
## output directory
|
48 |
+
parser.add_argument('--out-dir', type=str, default='output_vqfinal/', help='output directory')
|
49 |
+
parser.add_argument('--results-dir', type=str, default='visual_results/', help='output directory')
|
50 |
+
parser.add_argument('--visual-name', type=str, default='baseline', help='output directory')
|
51 |
+
parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
|
52 |
+
## other
|
53 |
+
parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
|
54 |
+
parser.add_argument('--eval-iter', default=1000, type=int, help='evaluation frequency')
|
55 |
+
parser.add_argument('--seed', default=123, type=int, help='seed for initializing training.')
|
56 |
+
|
57 |
+
parser.add_argument('--vis-gt', action='store_true', help='whether visualize GT motions')
|
58 |
+
parser.add_argument('--nb-vis', default=20, type=int, help='nb of visualizations')
|
59 |
+
|
60 |
+
|
61 |
+
return parser.parse_args()
|
VQ-Trans/render_final.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.rotation2xyz import Rotation2xyz
|
2 |
+
import numpy as np
|
3 |
+
from trimesh import Trimesh
|
4 |
+
import os
|
5 |
+
os.environ['PYOPENGL_PLATFORM'] = "osmesa"
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from visualize.simplify_loc2rot import joints2smpl
|
9 |
+
import pyrender
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import io
|
13 |
+
import imageio
|
14 |
+
from shapely import geometry
|
15 |
+
import trimesh
|
16 |
+
from pyrender.constants import RenderFlags
|
17 |
+
import math
|
18 |
+
# import ffmpeg
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
class WeakPerspectiveCamera(pyrender.Camera):
|
22 |
+
def __init__(self,
|
23 |
+
scale,
|
24 |
+
translation,
|
25 |
+
znear=pyrender.camera.DEFAULT_Z_NEAR,
|
26 |
+
zfar=None,
|
27 |
+
name=None):
|
28 |
+
super(WeakPerspectiveCamera, self).__init__(
|
29 |
+
znear=znear,
|
30 |
+
zfar=zfar,
|
31 |
+
name=name,
|
32 |
+
)
|
33 |
+
self.scale = scale
|
34 |
+
self.translation = translation
|
35 |
+
|
36 |
+
def get_projection_matrix(self, width=None, height=None):
|
37 |
+
P = np.eye(4)
|
38 |
+
P[0, 0] = self.scale[0]
|
39 |
+
P[1, 1] = self.scale[1]
|
40 |
+
P[0, 3] = self.translation[0] * self.scale[0]
|
41 |
+
P[1, 3] = -self.translation[1] * self.scale[1]
|
42 |
+
P[2, 2] = -1
|
43 |
+
return P
|
44 |
+
|
45 |
+
def render(motions, outdir='test_vis', device_id=0, name=None, pred=True):
|
46 |
+
frames, njoints, nfeats = motions.shape
|
47 |
+
MINS = motions.min(axis=0).min(axis=0)
|
48 |
+
MAXS = motions.max(axis=0).max(axis=0)
|
49 |
+
|
50 |
+
height_offset = MINS[1]
|
51 |
+
motions[:, :, 1] -= height_offset
|
52 |
+
trajec = motions[:, 0, [0, 2]]
|
53 |
+
|
54 |
+
j2s = joints2smpl(num_frames=frames, device_id=0, cuda=True)
|
55 |
+
rot2xyz = Rotation2xyz(device=torch.device("cuda:0"))
|
56 |
+
faces = rot2xyz.smpl_model.faces
|
57 |
+
|
58 |
+
if (not os.path.exists(outdir + name+'_pred.pt') and pred) or (not os.path.exists(outdir + name+'_gt.pt') and not pred):
|
59 |
+
print(f'Running SMPLify, it may take a few minutes.')
|
60 |
+
motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3]
|
61 |
+
|
62 |
+
vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None,
|
63 |
+
pose_rep='rot6d', translation=True, glob=True,
|
64 |
+
jointstype='vertices',
|
65 |
+
vertstrans=True)
|
66 |
+
|
67 |
+
if pred:
|
68 |
+
torch.save(vertices, outdir + name+'_pred.pt')
|
69 |
+
else:
|
70 |
+
torch.save(vertices, outdir + name+'_gt.pt')
|
71 |
+
else:
|
72 |
+
if pred:
|
73 |
+
vertices = torch.load(outdir + name+'_pred.pt')
|
74 |
+
else:
|
75 |
+
vertices = torch.load(outdir + name+'_gt.pt')
|
76 |
+
frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints
|
77 |
+
print (vertices.shape)
|
78 |
+
MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0]
|
79 |
+
MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0]
|
80 |
+
# vertices[:,:,1,:] -= MINS[1] + 1e-5
|
81 |
+
|
82 |
+
|
83 |
+
out_list = []
|
84 |
+
|
85 |
+
minx = MINS[0] - 0.5
|
86 |
+
maxx = MAXS[0] + 0.5
|
87 |
+
minz = MINS[2] - 0.5
|
88 |
+
maxz = MAXS[2] + 0.5
|
89 |
+
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
|
90 |
+
polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)
|
91 |
+
|
92 |
+
vid = []
|
93 |
+
for i in range(frames):
|
94 |
+
if i % 10 == 0:
|
95 |
+
print(i)
|
96 |
+
|
97 |
+
mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces)
|
98 |
+
|
99 |
+
base_color = (0.11, 0.53, 0.8, 0.5)
|
100 |
+
## OPAQUE rendering without alpha
|
101 |
+
## BLEND rendering consider alpha
|
102 |
+
material = pyrender.MetallicRoughnessMaterial(
|
103 |
+
metallicFactor=0.7,
|
104 |
+
alphaMode='OPAQUE',
|
105 |
+
baseColorFactor=base_color
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
110 |
+
|
111 |
+
polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
|
112 |
+
polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)
|
113 |
+
|
114 |
+
bg_color = [1, 1, 1, 0.8]
|
115 |
+
scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))
|
116 |
+
|
117 |
+
sx, sy, tx, ty = [0.75, 0.75, 0, 0.10]
|
118 |
+
|
119 |
+
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
|
120 |
+
|
121 |
+
light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)
|
122 |
+
|
123 |
+
scene.add(mesh)
|
124 |
+
|
125 |
+
c = np.pi / 2
|
126 |
+
|
127 |
+
scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],
|
128 |
+
|
129 |
+
[ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()],
|
130 |
+
|
131 |
+
[ 0, np.sin(c), np.cos(c), 0],
|
132 |
+
|
133 |
+
[ 0, 0, 0, 1]]))
|
134 |
+
|
135 |
+
light_pose = np.eye(4)
|
136 |
+
light_pose[:3, 3] = [0, -1, 1]
|
137 |
+
scene.add(light, pose=light_pose.copy())
|
138 |
+
|
139 |
+
light_pose[:3, 3] = [0, 1, 1]
|
140 |
+
scene.add(light, pose=light_pose.copy())
|
141 |
+
|
142 |
+
light_pose[:3, 3] = [1, 1, 2]
|
143 |
+
scene.add(light, pose=light_pose.copy())
|
144 |
+
|
145 |
+
|
146 |
+
c = -np.pi / 6
|
147 |
+
|
148 |
+
scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2],
|
149 |
+
|
150 |
+
[ 0, np.cos(c), -np.sin(c), 1.5],
|
151 |
+
|
152 |
+
[ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())],
|
153 |
+
|
154 |
+
[ 0, 0, 0, 1]
|
155 |
+
])
|
156 |
+
|
157 |
+
# render scene
|
158 |
+
r = pyrender.OffscreenRenderer(960, 960)
|
159 |
+
|
160 |
+
color, _ = r.render(scene, flags=RenderFlags.RGBA)
|
161 |
+
# Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png')
|
162 |
+
|
163 |
+
vid.append(color)
|
164 |
+
|
165 |
+
r.delete()
|
166 |
+
|
167 |
+
out = np.stack(vid, axis=0)
|
168 |
+
if pred:
|
169 |
+
imageio.mimsave(outdir + name+'_pred.gif', out, fps=20)
|
170 |
+
else:
|
171 |
+
imageio.mimsave(outdir + name+'_gt.gif', out, fps=20)
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
import argparse
|
179 |
+
parser = argparse.ArgumentParser()
|
180 |
+
parser.add_argument("--filedir", type=str, default=None, help='motion npy file dir')
|
181 |
+
parser.add_argument('--motion-list', default=None, nargs="+", type=str, help="motion name list")
|
182 |
+
args = parser.parse_args()
|
183 |
+
|
184 |
+
filename_list = args.motion_list
|
185 |
+
filedir = args.filedir
|
186 |
+
|
187 |
+
for filename in filename_list:
|
188 |
+
motions = np.load(filedir + filename+'_pred.npy')
|
189 |
+
print('pred', motions.shape, filename)
|
190 |
+
render(motions[0], outdir=filedir, device_id=0, name=filename, pred=True)
|
191 |
+
|
192 |
+
motions = np.load(filedir + filename+'_gt.npy')
|
193 |
+
print('gt', motions.shape, filename)
|
194 |
+
render(motions[0], outdir=filedir, device_id=0, name=filename, pred=False)
|
VQ-Trans/train_t2m_trans.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from torch.utils.tensorboard import SummaryWriter
|
6 |
+
from os.path import join as pjoin
|
7 |
+
from torch.distributions import Categorical
|
8 |
+
import json
|
9 |
+
import clip
|
10 |
+
|
11 |
+
import options.option_transformer as option_trans
|
12 |
+
import models.vqvae as vqvae
|
13 |
+
import utils.utils_model as utils_model
|
14 |
+
import utils.eval_trans as eval_trans
|
15 |
+
from dataset import dataset_TM_train
|
16 |
+
from dataset import dataset_TM_eval
|
17 |
+
from dataset import dataset_tokenize
|
18 |
+
import models.t2m_trans as trans
|
19 |
+
from options.get_eval_option import get_opt
|
20 |
+
from models.evaluator_wrapper import EvaluatorModelWrapper
|
21 |
+
import warnings
|
22 |
+
warnings.filterwarnings('ignore')
|
23 |
+
|
24 |
+
##### ---- Exp dirs ---- #####
|
25 |
+
args = option_trans.get_args_parser()
|
26 |
+
torch.manual_seed(args.seed)
|
27 |
+
|
28 |
+
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
|
29 |
+
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}')
|
30 |
+
os.makedirs(args.out_dir, exist_ok = True)
|
31 |
+
os.makedirs(args.vq_dir, exist_ok = True)
|
32 |
+
|
33 |
+
##### ---- Logger ---- #####
|
34 |
+
logger = utils_model.get_logger(args.out_dir)
|
35 |
+
writer = SummaryWriter(args.out_dir)
|
36 |
+
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
|
37 |
+
|
38 |
+
##### ---- Dataloader ---- #####
|
39 |
+
train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t)
|
40 |
+
|
41 |
+
from utils.word_vectorizer import WordVectorizer
|
42 |
+
w_vectorizer = WordVectorizer('./glove', 'our_vab')
|
43 |
+
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer)
|
44 |
+
|
45 |
+
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
|
46 |
+
|
47 |
+
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
|
48 |
+
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
|
49 |
+
|
50 |
+
##### ---- Network ---- #####
|
51 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training
|
52 |
+
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
|
53 |
+
clip_model.eval()
|
54 |
+
for p in clip_model.parameters():
|
55 |
+
p.requires_grad = False
|
56 |
+
|
57 |
+
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
|
58 |
+
args.nb_code,
|
59 |
+
args.code_dim,
|
60 |
+
args.output_emb_width,
|
61 |
+
args.down_t,
|
62 |
+
args.stride_t,
|
63 |
+
args.width,
|
64 |
+
args.depth,
|
65 |
+
args.dilation_growth_rate)
|
66 |
+
|
67 |
+
|
68 |
+
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
|
69 |
+
embed_dim=args.embed_dim_gpt,
|
70 |
+
clip_dim=args.clip_dim,
|
71 |
+
block_size=args.block_size,
|
72 |
+
num_layers=args.num_layers,
|
73 |
+
n_head=args.n_head_gpt,
|
74 |
+
drop_out_rate=args.drop_out_rate,
|
75 |
+
fc_rate=args.ff_rate)
|
76 |
+
|
77 |
+
|
78 |
+
print ('loading checkpoint from {}'.format(args.resume_pth))
|
79 |
+
ckpt = torch.load(args.resume_pth, map_location='cpu')
|
80 |
+
net.load_state_dict(ckpt['net'], strict=True)
|
81 |
+
net.eval()
|
82 |
+
net.cuda()
|
83 |
+
|
84 |
+
if args.resume_trans is not None:
|
85 |
+
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
|
86 |
+
ckpt = torch.load(args.resume_trans, map_location='cpu')
|
87 |
+
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
|
88 |
+
trans_encoder.train()
|
89 |
+
trans_encoder.cuda()
|
90 |
+
|
91 |
+
##### ---- Optimizer & Scheduler ---- #####
|
92 |
+
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer)
|
93 |
+
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
|
94 |
+
|
95 |
+
##### ---- Optimization goals ---- #####
|
96 |
+
loss_ce = torch.nn.CrossEntropyLoss()
|
97 |
+
|
98 |
+
nb_iter, avg_loss_cls, avg_acc = 0, 0., 0.
|
99 |
+
right_num = 0
|
100 |
+
nb_sample_train = 0
|
101 |
+
|
102 |
+
##### ---- get code ---- #####
|
103 |
+
for batch in train_loader_token:
|
104 |
+
pose, name = batch
|
105 |
+
bs, seq = pose.shape[0], pose.shape[1]
|
106 |
+
|
107 |
+
pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len
|
108 |
+
target = net.encode(pose)
|
109 |
+
target = target.cpu().numpy()
|
110 |
+
np.save(pjoin(args.vq_dir, name[0] +'.npy'), target)
|
111 |
+
|
112 |
+
|
113 |
+
train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t)
|
114 |
+
train_loader_iter = dataset_TM_train.cycle(train_loader)
|
115 |
+
|
116 |
+
|
117 |
+
##### ---- Training ---- #####
|
118 |
+
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper)
|
119 |
+
while nb_iter <= args.total_iter:
|
120 |
+
|
121 |
+
batch = next(train_loader_iter)
|
122 |
+
clip_text, m_tokens, m_tokens_len = batch
|
123 |
+
m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda()
|
124 |
+
bs = m_tokens.shape[0]
|
125 |
+
target = m_tokens # (bs, 26)
|
126 |
+
target = target.cuda()
|
127 |
+
|
128 |
+
text = clip.tokenize(clip_text, truncate=True).cuda()
|
129 |
+
|
130 |
+
feat_clip_text = clip_model.encode_text(text).float()
|
131 |
+
|
132 |
+
input_index = target[:,:-1]
|
133 |
+
|
134 |
+
if args.pkeep == -1:
|
135 |
+
proba = np.random.rand(1)[0]
|
136 |
+
mask = torch.bernoulli(proba * torch.ones(input_index.shape,
|
137 |
+
device=input_index.device))
|
138 |
+
else:
|
139 |
+
mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape,
|
140 |
+
device=input_index.device))
|
141 |
+
mask = mask.round().to(dtype=torch.int64)
|
142 |
+
r_indices = torch.randint_like(input_index, args.nb_code)
|
143 |
+
a_indices = mask*input_index+(1-mask)*r_indices
|
144 |
+
|
145 |
+
cls_pred = trans_encoder(a_indices, feat_clip_text)
|
146 |
+
cls_pred = cls_pred.contiguous()
|
147 |
+
|
148 |
+
loss_cls = 0.0
|
149 |
+
for i in range(bs):
|
150 |
+
# loss function (26), (26, 513)
|
151 |
+
loss_cls += loss_ce(cls_pred[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs
|
152 |
+
|
153 |
+
# Accuracy
|
154 |
+
probs = torch.softmax(cls_pred[i][:m_tokens_len[i] + 1], dim=-1)
|
155 |
+
|
156 |
+
if args.if_maxtest:
|
157 |
+
_, cls_pred_index = torch.max(probs, dim=-1)
|
158 |
+
|
159 |
+
else:
|
160 |
+
dist = Categorical(probs)
|
161 |
+
cls_pred_index = dist.sample()
|
162 |
+
right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item()
|
163 |
+
|
164 |
+
## global loss
|
165 |
+
optimizer.zero_grad()
|
166 |
+
loss_cls.backward()
|
167 |
+
optimizer.step()
|
168 |
+
scheduler.step()
|
169 |
+
|
170 |
+
avg_loss_cls = avg_loss_cls + loss_cls.item()
|
171 |
+
nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item()
|
172 |
+
|
173 |
+
nb_iter += 1
|
174 |
+
if nb_iter % args.print_iter == 0 :
|
175 |
+
avg_loss_cls = avg_loss_cls / args.print_iter
|
176 |
+
avg_acc = right_num * 100 / nb_sample_train
|
177 |
+
writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter)
|
178 |
+
writer.add_scalar('./ACC/train', avg_acc, nb_iter)
|
179 |
+
msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}"
|
180 |
+
logger.info(msg)
|
181 |
+
avg_loss_cls = 0.
|
182 |
+
right_num = 0
|
183 |
+
nb_sample_train = 0
|
184 |
+
|
185 |
+
if nb_iter % args.eval_iter == 0:
|
186 |
+
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper)
|
187 |
+
|
188 |
+
if nb_iter == args.total_iter:
|
189 |
+
msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}"
|
190 |
+
logger.info(msg_final)
|
191 |
+
break
|
VQ-Trans/train_vq.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.optim as optim
|
6 |
+
from torch.utils.tensorboard import SummaryWriter
|
7 |
+
|
8 |
+
import models.vqvae as vqvae
|
9 |
+
import utils.losses as losses
|
10 |
+
import options.option_vq as option_vq
|
11 |
+
import utils.utils_model as utils_model
|
12 |
+
from dataset import dataset_VQ, dataset_TM_eval
|
13 |
+
import utils.eval_trans as eval_trans
|
14 |
+
from options.get_eval_option import get_opt
|
15 |
+
from models.evaluator_wrapper import EvaluatorModelWrapper
|
16 |
+
import warnings
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
from utils.word_vectorizer import WordVectorizer
|
19 |
+
|
20 |
+
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
|
21 |
+
|
22 |
+
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
|
23 |
+
for param_group in optimizer.param_groups:
|
24 |
+
param_group["lr"] = current_lr
|
25 |
+
|
26 |
+
return optimizer, current_lr
|
27 |
+
|
28 |
+
##### ---- Exp dirs ---- #####
|
29 |
+
args = option_vq.get_args_parser()
|
30 |
+
torch.manual_seed(args.seed)
|
31 |
+
|
32 |
+
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
|
33 |
+
os.makedirs(args.out_dir, exist_ok = True)
|
34 |
+
|
35 |
+
##### ---- Logger ---- #####
|
36 |
+
logger = utils_model.get_logger(args.out_dir)
|
37 |
+
writer = SummaryWriter(args.out_dir)
|
38 |
+
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
w_vectorizer = WordVectorizer('./glove', 'our_vab')
|
43 |
+
|
44 |
+
if args.dataname == 'kit' :
|
45 |
+
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
|
46 |
+
args.nb_joints = 21
|
47 |
+
|
48 |
+
else :
|
49 |
+
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
|
50 |
+
args.nb_joints = 22
|
51 |
+
|
52 |
+
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
|
53 |
+
|
54 |
+
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
|
55 |
+
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
|
56 |
+
|
57 |
+
|
58 |
+
##### ---- Dataloader ---- #####
|
59 |
+
train_loader = dataset_VQ.DATALoader(args.dataname,
|
60 |
+
args.batch_size,
|
61 |
+
window_size=args.window_size,
|
62 |
+
unit_length=2**args.down_t)
|
63 |
+
|
64 |
+
train_loader_iter = dataset_VQ.cycle(train_loader)
|
65 |
+
|
66 |
+
val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
|
67 |
+
32,
|
68 |
+
w_vectorizer,
|
69 |
+
unit_length=2**args.down_t)
|
70 |
+
|
71 |
+
##### ---- Network ---- #####
|
72 |
+
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
|
73 |
+
args.nb_code,
|
74 |
+
args.code_dim,
|
75 |
+
args.output_emb_width,
|
76 |
+
args.down_t,
|
77 |
+
args.stride_t,
|
78 |
+
args.width,
|
79 |
+
args.depth,
|
80 |
+
args.dilation_growth_rate,
|
81 |
+
args.vq_act,
|
82 |
+
args.vq_norm)
|
83 |
+
|
84 |
+
|
85 |
+
if args.resume_pth :
|
86 |
+
logger.info('loading checkpoint from {}'.format(args.resume_pth))
|
87 |
+
ckpt = torch.load(args.resume_pth, map_location='cpu')
|
88 |
+
net.load_state_dict(ckpt['net'], strict=True)
|
89 |
+
net.train()
|
90 |
+
net.cuda()
|
91 |
+
|
92 |
+
##### ---- Optimizer & Scheduler ---- #####
|
93 |
+
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
|
94 |
+
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
|
95 |
+
|
96 |
+
|
97 |
+
Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
|
98 |
+
|
99 |
+
##### ------ warm-up ------- #####
|
100 |
+
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
|
101 |
+
|
102 |
+
for nb_iter in range(1, args.warm_up_iter):
|
103 |
+
|
104 |
+
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
|
105 |
+
|
106 |
+
gt_motion = next(train_loader_iter)
|
107 |
+
gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
|
108 |
+
|
109 |
+
pred_motion, loss_commit, perplexity = net(gt_motion)
|
110 |
+
loss_motion = Loss(pred_motion, gt_motion)
|
111 |
+
loss_vel = Loss.forward_vel(pred_motion, gt_motion)
|
112 |
+
|
113 |
+
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
|
114 |
+
|
115 |
+
optimizer.zero_grad()
|
116 |
+
loss.backward()
|
117 |
+
optimizer.step()
|
118 |
+
|
119 |
+
avg_recons += loss_motion.item()
|
120 |
+
avg_perplexity += perplexity.item()
|
121 |
+
avg_commit += loss_commit.item()
|
122 |
+
|
123 |
+
if nb_iter % args.print_iter == 0 :
|
124 |
+
avg_recons /= args.print_iter
|
125 |
+
avg_perplexity /= args.print_iter
|
126 |
+
avg_commit /= args.print_iter
|
127 |
+
|
128 |
+
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
|
129 |
+
|
130 |
+
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
|
131 |
+
|
132 |
+
##### ---- Training ---- #####
|
133 |
+
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
|
134 |
+
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
|
135 |
+
|
136 |
+
for nb_iter in range(1, args.total_iter + 1):
|
137 |
+
|
138 |
+
gt_motion = next(train_loader_iter)
|
139 |
+
gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
|
140 |
+
|
141 |
+
pred_motion, loss_commit, perplexity = net(gt_motion)
|
142 |
+
loss_motion = Loss(pred_motion, gt_motion)
|
143 |
+
loss_vel = Loss.forward_vel(pred_motion, gt_motion)
|
144 |
+
|
145 |
+
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
|
146 |
+
|
147 |
+
optimizer.zero_grad()
|
148 |
+
loss.backward()
|
149 |
+
optimizer.step()
|
150 |
+
scheduler.step()
|
151 |
+
|
152 |
+
avg_recons += loss_motion.item()
|
153 |
+
avg_perplexity += perplexity.item()
|
154 |
+
avg_commit += loss_commit.item()
|
155 |
+
|
156 |
+
if nb_iter % args.print_iter == 0 :
|
157 |
+
avg_recons /= args.print_iter
|
158 |
+
avg_perplexity /= args.print_iter
|
159 |
+
avg_commit /= args.print_iter
|
160 |
+
|
161 |
+
writer.add_scalar('./Train/L1', avg_recons, nb_iter)
|
162 |
+
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
|
163 |
+
writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
|
164 |
+
|
165 |
+
logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
|
166 |
+
|
167 |
+
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,
|
168 |
+
|
169 |
+
if nb_iter % args.eval_iter==0 :
|
170 |
+
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)
|
171 |
+
|
VQ-Trans/utils/config.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
SMPL_DATA_PATH = "./body_models/smpl"
|
4 |
+
|
5 |
+
SMPL_KINTREE_PATH = os.path.join(SMPL_DATA_PATH, "kintree_table.pkl")
|
6 |
+
SMPL_MODEL_PATH = os.path.join(SMPL_DATA_PATH, "SMPL_NEUTRAL.pkl")
|
7 |
+
JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(SMPL_DATA_PATH, 'J_regressor_extra.npy')
|
8 |
+
|
9 |
+
ROT_CONVENTION_TO_ROT_NUMBER = {
|
10 |
+
'legacy': 23,
|
11 |
+
'no_hands': 21,
|
12 |
+
'full_hands': 51,
|
13 |
+
'mitten_hands': 33,
|
14 |
+
}
|
15 |
+
|
16 |
+
GENDERS = ['neutral', 'male', 'female']
|
17 |
+
NUM_BETAS = 10
|
VQ-Trans/utils/eval_trans.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import clip
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from scipy import linalg
|
7 |
+
|
8 |
+
import visualization.plot_3d_global as plot_3d
|
9 |
+
from utils.motion_process import recover_from_ric
|
10 |
+
|
11 |
+
|
12 |
+
def tensorborad_add_video_xyz(writer, xyz, nb_iter, tag, nb_vis=4, title_batch=None, outname=None):
|
13 |
+
xyz = xyz[:1]
|
14 |
+
bs, seq = xyz.shape[:2]
|
15 |
+
xyz = xyz.reshape(bs, seq, -1, 3)
|
16 |
+
plot_xyz = plot_3d.draw_to_batch(xyz.cpu().numpy(),title_batch, outname)
|
17 |
+
plot_xyz =np.transpose(plot_xyz, (0, 1, 4, 2, 3))
|
18 |
+
writer.add_video(tag, plot_xyz, nb_iter, fps = 20)
|
19 |
+
|
20 |
+
@torch.no_grad()
|
21 |
+
def evaluation_vqvae(out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) :
|
22 |
+
net.eval()
|
23 |
+
nb_sample = 0
|
24 |
+
|
25 |
+
draw_org = []
|
26 |
+
draw_pred = []
|
27 |
+
draw_text = []
|
28 |
+
|
29 |
+
|
30 |
+
motion_annotation_list = []
|
31 |
+
motion_pred_list = []
|
32 |
+
|
33 |
+
R_precision_real = 0
|
34 |
+
R_precision = 0
|
35 |
+
|
36 |
+
nb_sample = 0
|
37 |
+
matching_score_real = 0
|
38 |
+
matching_score_pred = 0
|
39 |
+
for batch in val_loader:
|
40 |
+
word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token, name = batch
|
41 |
+
|
42 |
+
motion = motion.cuda()
|
43 |
+
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
|
44 |
+
bs, seq = motion.shape[0], motion.shape[1]
|
45 |
+
|
46 |
+
num_joints = 21 if motion.shape[-1] == 251 else 22
|
47 |
+
|
48 |
+
pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
|
49 |
+
|
50 |
+
for i in range(bs):
|
51 |
+
pose = val_loader.dataset.inv_transform(motion[i:i+1, :m_length[i], :].detach().cpu().numpy())
|
52 |
+
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
|
53 |
+
|
54 |
+
|
55 |
+
pred_pose, loss_commit, perplexity = net(motion[i:i+1, :m_length[i]])
|
56 |
+
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
|
57 |
+
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
|
58 |
+
|
59 |
+
if savenpy:
|
60 |
+
np.save(os.path.join(out_dir, name[i]+'_gt.npy'), pose_xyz[:, :m_length[i]].cpu().numpy())
|
61 |
+
np.save(os.path.join(out_dir, name[i]+'_pred.npy'), pred_xyz.detach().cpu().numpy())
|
62 |
+
|
63 |
+
pred_pose_eval[i:i+1,:m_length[i],:] = pred_pose
|
64 |
+
|
65 |
+
if i < min(4, bs):
|
66 |
+
draw_org.append(pose_xyz)
|
67 |
+
draw_pred.append(pred_xyz)
|
68 |
+
draw_text.append(caption[i])
|
69 |
+
|
70 |
+
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, m_length)
|
71 |
+
|
72 |
+
motion_pred_list.append(em_pred)
|
73 |
+
motion_annotation_list.append(em)
|
74 |
+
|
75 |
+
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
|
76 |
+
R_precision_real += temp_R
|
77 |
+
matching_score_real += temp_match
|
78 |
+
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
|
79 |
+
R_precision += temp_R
|
80 |
+
matching_score_pred += temp_match
|
81 |
+
|
82 |
+
nb_sample += bs
|
83 |
+
|
84 |
+
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
|
85 |
+
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
|
86 |
+
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
|
87 |
+
mu, cov= calculate_activation_statistics(motion_pred_np)
|
88 |
+
|
89 |
+
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
|
90 |
+
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
|
91 |
+
|
92 |
+
R_precision_real = R_precision_real / nb_sample
|
93 |
+
R_precision = R_precision / nb_sample
|
94 |
+
|
95 |
+
matching_score_real = matching_score_real / nb_sample
|
96 |
+
matching_score_pred = matching_score_pred / nb_sample
|
97 |
+
|
98 |
+
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
|
99 |
+
|
100 |
+
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
|
101 |
+
logger.info(msg)
|
102 |
+
|
103 |
+
if draw:
|
104 |
+
writer.add_scalar('./Test/FID', fid, nb_iter)
|
105 |
+
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
|
106 |
+
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
|
107 |
+
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
|
108 |
+
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
|
109 |
+
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
|
110 |
+
|
111 |
+
|
112 |
+
if nb_iter % 5000 == 0 :
|
113 |
+
for ii in range(4):
|
114 |
+
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
|
115 |
+
|
116 |
+
if nb_iter % 5000 == 0 :
|
117 |
+
for ii in range(4):
|
118 |
+
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
|
119 |
+
|
120 |
+
|
121 |
+
if fid < best_fid :
|
122 |
+
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
|
123 |
+
logger.info(msg)
|
124 |
+
best_fid, best_iter = fid, nb_iter
|
125 |
+
if save:
|
126 |
+
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
|
127 |
+
|
128 |
+
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
|
129 |
+
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
|
130 |
+
logger.info(msg)
|
131 |
+
best_div = diversity
|
132 |
+
if save:
|
133 |
+
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_div.pth'))
|
134 |
+
|
135 |
+
if R_precision[0] > best_top1 :
|
136 |
+
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
|
137 |
+
logger.info(msg)
|
138 |
+
best_top1 = R_precision[0]
|
139 |
+
if save:
|
140 |
+
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_top1.pth'))
|
141 |
+
|
142 |
+
if R_precision[1] > best_top2 :
|
143 |
+
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
|
144 |
+
logger.info(msg)
|
145 |
+
best_top2 = R_precision[1]
|
146 |
+
|
147 |
+
if R_precision[2] > best_top3 :
|
148 |
+
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
|
149 |
+
logger.info(msg)
|
150 |
+
best_top3 = R_precision[2]
|
151 |
+
|
152 |
+
if matching_score_pred < best_matching :
|
153 |
+
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
|
154 |
+
logger.info(msg)
|
155 |
+
best_matching = matching_score_pred
|
156 |
+
if save:
|
157 |
+
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_best_matching.pth'))
|
158 |
+
|
159 |
+
if save:
|
160 |
+
torch.save({'net' : net.state_dict()}, os.path.join(out_dir, 'net_last.pth'))
|
161 |
+
|
162 |
+
net.train()
|
163 |
+
return best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger
|
164 |
+
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
def evaluation_transformer(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model, eval_wrapper, draw = True, save = True, savegif=False) :
|
168 |
+
|
169 |
+
trans.eval()
|
170 |
+
nb_sample = 0
|
171 |
+
|
172 |
+
draw_org = []
|
173 |
+
draw_pred = []
|
174 |
+
draw_text = []
|
175 |
+
draw_text_pred = []
|
176 |
+
|
177 |
+
motion_annotation_list = []
|
178 |
+
motion_pred_list = []
|
179 |
+
R_precision_real = 0
|
180 |
+
R_precision = 0
|
181 |
+
matching_score_real = 0
|
182 |
+
matching_score_pred = 0
|
183 |
+
|
184 |
+
nb_sample = 0
|
185 |
+
for i in range(1):
|
186 |
+
for batch in val_loader:
|
187 |
+
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch
|
188 |
+
|
189 |
+
bs, seq = pose.shape[:2]
|
190 |
+
num_joints = 21 if pose.shape[-1] == 251 else 22
|
191 |
+
|
192 |
+
text = clip.tokenize(clip_text, truncate=True).cuda()
|
193 |
+
|
194 |
+
feat_clip_text = clip_model.encode_text(text).float()
|
195 |
+
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
|
196 |
+
pred_len = torch.ones(bs).long()
|
197 |
+
|
198 |
+
for k in range(bs):
|
199 |
+
try:
|
200 |
+
index_motion = trans.sample(feat_clip_text[k:k+1], False)
|
201 |
+
except:
|
202 |
+
index_motion = torch.ones(1,1).cuda().long()
|
203 |
+
|
204 |
+
pred_pose = net.forward_decoder(index_motion)
|
205 |
+
cur_len = pred_pose.shape[1]
|
206 |
+
|
207 |
+
pred_len[k] = min(cur_len, seq)
|
208 |
+
pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
|
209 |
+
|
210 |
+
if draw:
|
211 |
+
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
|
212 |
+
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
|
213 |
+
|
214 |
+
if i == 0 and k < 4:
|
215 |
+
draw_pred.append(pred_xyz)
|
216 |
+
draw_text_pred.append(clip_text[k])
|
217 |
+
|
218 |
+
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
|
219 |
+
|
220 |
+
if i == 0:
|
221 |
+
pose = pose.cuda().float()
|
222 |
+
|
223 |
+
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
|
224 |
+
motion_annotation_list.append(em)
|
225 |
+
motion_pred_list.append(em_pred)
|
226 |
+
|
227 |
+
if draw:
|
228 |
+
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
|
229 |
+
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
|
230 |
+
|
231 |
+
|
232 |
+
for j in range(min(4, bs)):
|
233 |
+
draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
|
234 |
+
draw_text.append(clip_text[j])
|
235 |
+
|
236 |
+
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
|
237 |
+
R_precision_real += temp_R
|
238 |
+
matching_score_real += temp_match
|
239 |
+
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
|
240 |
+
R_precision += temp_R
|
241 |
+
matching_score_pred += temp_match
|
242 |
+
|
243 |
+
nb_sample += bs
|
244 |
+
|
245 |
+
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
|
246 |
+
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
|
247 |
+
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
|
248 |
+
mu, cov= calculate_activation_statistics(motion_pred_np)
|
249 |
+
|
250 |
+
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
|
251 |
+
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
|
252 |
+
|
253 |
+
R_precision_real = R_precision_real / nb_sample
|
254 |
+
R_precision = R_precision / nb_sample
|
255 |
+
|
256 |
+
matching_score_real = matching_score_real / nb_sample
|
257 |
+
matching_score_pred = matching_score_pred / nb_sample
|
258 |
+
|
259 |
+
|
260 |
+
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
|
261 |
+
|
262 |
+
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
|
263 |
+
logger.info(msg)
|
264 |
+
|
265 |
+
|
266 |
+
if draw:
|
267 |
+
writer.add_scalar('./Test/FID', fid, nb_iter)
|
268 |
+
writer.add_scalar('./Test/Diversity', diversity, nb_iter)
|
269 |
+
writer.add_scalar('./Test/top1', R_precision[0], nb_iter)
|
270 |
+
writer.add_scalar('./Test/top2', R_precision[1], nb_iter)
|
271 |
+
writer.add_scalar('./Test/top3', R_precision[2], nb_iter)
|
272 |
+
writer.add_scalar('./Test/matching_score', matching_score_pred, nb_iter)
|
273 |
+
|
274 |
+
|
275 |
+
if nb_iter % 10000 == 0 :
|
276 |
+
for ii in range(4):
|
277 |
+
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/org_eval'+str(ii), nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, 'gt'+str(ii)+'.gif')] if savegif else None)
|
278 |
+
|
279 |
+
if nb_iter % 10000 == 0 :
|
280 |
+
for ii in range(4):
|
281 |
+
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/pred_eval'+str(ii), nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, 'pred'+str(ii)+'.gif')] if savegif else None)
|
282 |
+
|
283 |
+
|
284 |
+
if fid < best_fid :
|
285 |
+
msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
|
286 |
+
logger.info(msg)
|
287 |
+
best_fid, best_iter = fid, nb_iter
|
288 |
+
if save:
|
289 |
+
torch.save({'trans' : trans.state_dict()}, os.path.join(out_dir, 'net_best_fid.pth'))
|
290 |
+
|
291 |
+
if matching_score_pred < best_matching :
|
292 |
+
msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
|
293 |
+
logger.info(msg)
|
294 |
+
best_matching = matching_score_pred
|
295 |
+
|
296 |
+
if abs(diversity_real - diversity) < abs(diversity_real - best_div) :
|
297 |
+
msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
|
298 |
+
logger.info(msg)
|
299 |
+
best_div = diversity
|
300 |
+
|
301 |
+
if R_precision[0] > best_top1 :
|
302 |
+
msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
|
303 |
+
logger.info(msg)
|
304 |
+
best_top1 = R_precision[0]
|
305 |
+
|
306 |
+
if R_precision[1] > best_top2 :
|
307 |
+
msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
|
308 |
+
logger.info(msg)
|
309 |
+
best_top2 = R_precision[1]
|
310 |
+
|
311 |
+
if R_precision[2] > best_top3 :
|
312 |
+
msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
|
313 |
+
logger.info(msg)
|
314 |
+
best_top3 = R_precision[2]
|
315 |
+
|
316 |
+
if save:
|
317 |
+
torch.save({'trans' : trans.state_dict()}, os.path.join(out_dir, 'net_last.pth'))
|
318 |
+
|
319 |
+
trans.train()
|
320 |
+
return best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger
|
321 |
+
|
322 |
+
|
323 |
+
@torch.no_grad()
|
324 |
+
def evaluation_transformer_test(out_dir, val_loader, net, trans, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, clip_model, eval_wrapper, draw = True, save = True, savegif=False, savenpy=False) :
|
325 |
+
|
326 |
+
trans.eval()
|
327 |
+
nb_sample = 0
|
328 |
+
|
329 |
+
draw_org = []
|
330 |
+
draw_pred = []
|
331 |
+
draw_text = []
|
332 |
+
draw_text_pred = []
|
333 |
+
draw_name = []
|
334 |
+
|
335 |
+
motion_annotation_list = []
|
336 |
+
motion_pred_list = []
|
337 |
+
motion_multimodality = []
|
338 |
+
R_precision_real = 0
|
339 |
+
R_precision = 0
|
340 |
+
matching_score_real = 0
|
341 |
+
matching_score_pred = 0
|
342 |
+
|
343 |
+
nb_sample = 0
|
344 |
+
|
345 |
+
for batch in val_loader:
|
346 |
+
|
347 |
+
word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token, name = batch
|
348 |
+
bs, seq = pose.shape[:2]
|
349 |
+
num_joints = 21 if pose.shape[-1] == 251 else 22
|
350 |
+
|
351 |
+
text = clip.tokenize(clip_text, truncate=True).cuda()
|
352 |
+
|
353 |
+
feat_clip_text = clip_model.encode_text(text).float()
|
354 |
+
motion_multimodality_batch = []
|
355 |
+
for i in range(30):
|
356 |
+
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1])).cuda()
|
357 |
+
pred_len = torch.ones(bs).long()
|
358 |
+
|
359 |
+
for k in range(bs):
|
360 |
+
try:
|
361 |
+
index_motion = trans.sample(feat_clip_text[k:k+1], True)
|
362 |
+
except:
|
363 |
+
index_motion = torch.ones(1,1).cuda().long()
|
364 |
+
|
365 |
+
pred_pose = net.forward_decoder(index_motion)
|
366 |
+
cur_len = pred_pose.shape[1]
|
367 |
+
|
368 |
+
pred_len[k] = min(cur_len, seq)
|
369 |
+
pred_pose_eval[k:k+1, :cur_len] = pred_pose[:, :seq]
|
370 |
+
|
371 |
+
if i == 0 and (draw or savenpy):
|
372 |
+
pred_denorm = val_loader.dataset.inv_transform(pred_pose.detach().cpu().numpy())
|
373 |
+
pred_xyz = recover_from_ric(torch.from_numpy(pred_denorm).float().cuda(), num_joints)
|
374 |
+
|
375 |
+
if savenpy:
|
376 |
+
np.save(os.path.join(out_dir, name[k]+'_pred.npy'), pred_xyz.detach().cpu().numpy())
|
377 |
+
|
378 |
+
if draw:
|
379 |
+
if i == 0:
|
380 |
+
draw_pred.append(pred_xyz)
|
381 |
+
draw_text_pred.append(clip_text[k])
|
382 |
+
draw_name.append(name[k])
|
383 |
+
|
384 |
+
et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval, pred_len)
|
385 |
+
|
386 |
+
motion_multimodality_batch.append(em_pred.reshape(bs, 1, -1))
|
387 |
+
|
388 |
+
if i == 0:
|
389 |
+
pose = pose.cuda().float()
|
390 |
+
|
391 |
+
et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
|
392 |
+
motion_annotation_list.append(em)
|
393 |
+
motion_pred_list.append(em_pred)
|
394 |
+
|
395 |
+
if draw or savenpy:
|
396 |
+
pose = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
|
397 |
+
pose_xyz = recover_from_ric(torch.from_numpy(pose).float().cuda(), num_joints)
|
398 |
+
|
399 |
+
if savenpy:
|
400 |
+
for j in range(bs):
|
401 |
+
np.save(os.path.join(out_dir, name[j]+'_gt.npy'), pose_xyz[j][:m_length[j]].unsqueeze(0).cpu().numpy())
|
402 |
+
|
403 |
+
if draw:
|
404 |
+
for j in range(bs):
|
405 |
+
draw_org.append(pose_xyz[j][:m_length[j]].unsqueeze(0))
|
406 |
+
draw_text.append(clip_text[j])
|
407 |
+
|
408 |
+
temp_R, temp_match = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
|
409 |
+
R_precision_real += temp_R
|
410 |
+
matching_score_real += temp_match
|
411 |
+
temp_R, temp_match = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
|
412 |
+
R_precision += temp_R
|
413 |
+
matching_score_pred += temp_match
|
414 |
+
|
415 |
+
nb_sample += bs
|
416 |
+
|
417 |
+
motion_multimodality.append(torch.cat(motion_multimodality_batch, dim=1))
|
418 |
+
|
419 |
+
motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
|
420 |
+
motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
|
421 |
+
gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
|
422 |
+
mu, cov= calculate_activation_statistics(motion_pred_np)
|
423 |
+
|
424 |
+
diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
|
425 |
+
diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
|
426 |
+
|
427 |
+
R_precision_real = R_precision_real / nb_sample
|
428 |
+
R_precision = R_precision / nb_sample
|
429 |
+
|
430 |
+
matching_score_real = matching_score_real / nb_sample
|
431 |
+
matching_score_pred = matching_score_pred / nb_sample
|
432 |
+
|
433 |
+
multimodality = 0
|
434 |
+
motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
|
435 |
+
multimodality = calculate_multimodality(motion_multimodality, 10)
|
436 |
+
|
437 |
+
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
|
438 |
+
|
439 |
+
msg = f"--> \t Eva. Iter {nb_iter} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}, multimodality. {multimodality:.4f}"
|
440 |
+
logger.info(msg)
|
441 |
+
|
442 |
+
|
443 |
+
if draw:
|
444 |
+
for ii in range(len(draw_org)):
|
445 |
+
tensorborad_add_video_xyz(writer, draw_org[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_org', nb_vis=1, title_batch=[draw_text[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_gt.gif')] if savegif else None)
|
446 |
+
|
447 |
+
tensorborad_add_video_xyz(writer, draw_pred[ii], nb_iter, tag='./Vis/'+draw_name[ii]+'_pred', nb_vis=1, title_batch=[draw_text_pred[ii]], outname=[os.path.join(out_dir, draw_name[ii]+'_skel_pred.gif')] if savegif else None)
|
448 |
+
|
449 |
+
trans.train()
|
450 |
+
return fid, best_iter, diversity, R_precision[0], R_precision[1], R_precision[2], matching_score_pred, multimodality, writer, logger
|
451 |
+
|
452 |
+
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
|
453 |
+
def euclidean_distance_matrix(matrix1, matrix2):
|
454 |
+
"""
|
455 |
+
Params:
|
456 |
+
-- matrix1: N1 x D
|
457 |
+
-- matrix2: N2 x D
|
458 |
+
Returns:
|
459 |
+
-- dist: N1 x N2
|
460 |
+
dist[i, j] == distance(matrix1[i], matrix2[j])
|
461 |
+
"""
|
462 |
+
assert matrix1.shape[1] == matrix2.shape[1]
|
463 |
+
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
|
464 |
+
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
|
465 |
+
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
|
466 |
+
dists = np.sqrt(d1 + d2 + d3) # broadcasting
|
467 |
+
return dists
|
468 |
+
|
469 |
+
|
470 |
+
|
471 |
+
def calculate_top_k(mat, top_k):
|
472 |
+
size = mat.shape[0]
|
473 |
+
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
|
474 |
+
bool_mat = (mat == gt_mat)
|
475 |
+
correct_vec = False
|
476 |
+
top_k_list = []
|
477 |
+
for i in range(top_k):
|
478 |
+
# print(correct_vec, bool_mat[:, i])
|
479 |
+
correct_vec = (correct_vec | bool_mat[:, i])
|
480 |
+
# print(correct_vec)
|
481 |
+
top_k_list.append(correct_vec[:, None])
|
482 |
+
top_k_mat = np.concatenate(top_k_list, axis=1)
|
483 |
+
return top_k_mat
|
484 |
+
|
485 |
+
|
486 |
+
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
|
487 |
+
dist_mat = euclidean_distance_matrix(embedding1, embedding2)
|
488 |
+
matching_score = dist_mat.trace()
|
489 |
+
argmax = np.argsort(dist_mat, axis=1)
|
490 |
+
top_k_mat = calculate_top_k(argmax, top_k)
|
491 |
+
if sum_all:
|
492 |
+
return top_k_mat.sum(axis=0), matching_score
|
493 |
+
else:
|
494 |
+
return top_k_mat, matching_score
|
495 |
+
|
496 |
+
def calculate_multimodality(activation, multimodality_times):
|
497 |
+
assert len(activation.shape) == 3
|
498 |
+
assert activation.shape[1] > multimodality_times
|
499 |
+
num_per_sent = activation.shape[1]
|
500 |
+
|
501 |
+
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
502 |
+
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
503 |
+
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
|
504 |
+
return dist.mean()
|
505 |
+
|
506 |
+
|
507 |
+
def calculate_diversity(activation, diversity_times):
|
508 |
+
assert len(activation.shape) == 2
|
509 |
+
assert activation.shape[0] > diversity_times
|
510 |
+
num_samples = activation.shape[0]
|
511 |
+
|
512 |
+
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
513 |
+
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
514 |
+
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
|
515 |
+
return dist.mean()
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
520 |
+
|
521 |
+
mu1 = np.atleast_1d(mu1)
|
522 |
+
mu2 = np.atleast_1d(mu2)
|
523 |
+
|
524 |
+
sigma1 = np.atleast_2d(sigma1)
|
525 |
+
sigma2 = np.atleast_2d(sigma2)
|
526 |
+
|
527 |
+
assert mu1.shape == mu2.shape, \
|
528 |
+
'Training and test mean vectors have different lengths'
|
529 |
+
assert sigma1.shape == sigma2.shape, \
|
530 |
+
'Training and test covariances have different dimensions'
|
531 |
+
|
532 |
+
diff = mu1 - mu2
|
533 |
+
|
534 |
+
# Product might be almost singular
|
535 |
+
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
536 |
+
if not np.isfinite(covmean).all():
|
537 |
+
msg = ('fid calculation produces singular product; '
|
538 |
+
'adding %s to diagonal of cov estimates') % eps
|
539 |
+
print(msg)
|
540 |
+
offset = np.eye(sigma1.shape[0]) * eps
|
541 |
+
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
542 |
+
|
543 |
+
# Numerical error might give slight imaginary component
|
544 |
+
if np.iscomplexobj(covmean):
|
545 |
+
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
546 |
+
m = np.max(np.abs(covmean.imag))
|
547 |
+
raise ValueError('Imaginary component {}'.format(m))
|
548 |
+
covmean = covmean.real
|
549 |
+
|
550 |
+
tr_covmean = np.trace(covmean)
|
551 |
+
|
552 |
+
return (diff.dot(diff) + np.trace(sigma1)
|
553 |
+
+ np.trace(sigma2) - 2 * tr_covmean)
|
554 |
+
|
555 |
+
|
556 |
+
|
557 |
+
def calculate_activation_statistics(activations):
|
558 |
+
|
559 |
+
mu = np.mean(activations, axis=0)
|
560 |
+
cov = np.cov(activations, rowvar=False)
|
561 |
+
return mu, cov
|
562 |
+
|
563 |
+
|
564 |
+
def calculate_frechet_feature_distance(feature_list1, feature_list2):
|
565 |
+
feature_list1 = np.stack(feature_list1)
|
566 |
+
feature_list2 = np.stack(feature_list2)
|
567 |
+
|
568 |
+
# normalize the scale
|
569 |
+
mean = np.mean(feature_list1, axis=0)
|
570 |
+
std = np.std(feature_list1, axis=0) + 1e-10
|
571 |
+
feature_list1 = (feature_list1 - mean) / std
|
572 |
+
feature_list2 = (feature_list2 - mean) / std
|
573 |
+
|
574 |
+
dist = calculate_frechet_distance(
|
575 |
+
mu1=np.mean(feature_list1, axis=0),
|
576 |
+
sigma1=np.cov(feature_list1, rowvar=False),
|
577 |
+
mu2=np.mean(feature_list2, axis=0),
|
578 |
+
sigma2=np.cov(feature_list2, rowvar=False),
|
579 |
+
)
|
580 |
+
return dist
|
VQ-Trans/utils/losses.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class ReConsLoss(nn.Module):
|
5 |
+
def __init__(self, recons_loss, nb_joints):
|
6 |
+
super(ReConsLoss, self).__init__()
|
7 |
+
|
8 |
+
if recons_loss == 'l1':
|
9 |
+
self.Loss = torch.nn.L1Loss()
|
10 |
+
elif recons_loss == 'l2' :
|
11 |
+
self.Loss = torch.nn.MSELoss()
|
12 |
+
elif recons_loss == 'l1_smooth' :
|
13 |
+
self.Loss = torch.nn.SmoothL1Loss()
|
14 |
+
|
15 |
+
# 4 global motion associated to root
|
16 |
+
# 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d)
|
17 |
+
# 3 global vel xyz
|
18 |
+
# 4 foot contact
|
19 |
+
self.nb_joints = nb_joints
|
20 |
+
self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4
|
21 |
+
|
22 |
+
def forward(self, motion_pred, motion_gt) :
|
23 |
+
loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim])
|
24 |
+
return loss
|
25 |
+
|
26 |
+
def forward_vel(self, motion_pred, motion_gt) :
|
27 |
+
loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4])
|
28 |
+
return loss
|
29 |
+
|
30 |
+
|
VQ-Trans/utils/motion_process.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from utils.quaternion import quaternion_to_cont6d, qrot, qinv
|
3 |
+
|
4 |
+
def recover_root_rot_pos(data):
|
5 |
+
rot_vel = data[..., 0]
|
6 |
+
r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
|
7 |
+
'''Get Y-axis rotation from rotation velocity'''
|
8 |
+
r_rot_ang[..., 1:] = rot_vel[..., :-1]
|
9 |
+
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
|
10 |
+
|
11 |
+
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
|
12 |
+
r_rot_quat[..., 0] = torch.cos(r_rot_ang)
|
13 |
+
r_rot_quat[..., 2] = torch.sin(r_rot_ang)
|
14 |
+
|
15 |
+
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
|
16 |
+
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
|
17 |
+
'''Add Y-axis rotation to root position'''
|
18 |
+
r_pos = qrot(qinv(r_rot_quat), r_pos)
|
19 |
+
|
20 |
+
r_pos = torch.cumsum(r_pos, dim=-2)
|
21 |
+
|
22 |
+
r_pos[..., 1] = data[..., 3]
|
23 |
+
return r_rot_quat, r_pos
|
24 |
+
|
25 |
+
|
26 |
+
def recover_from_rot(data, joints_num, skeleton):
|
27 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
28 |
+
|
29 |
+
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
|
30 |
+
|
31 |
+
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
|
32 |
+
end_indx = start_indx + (joints_num - 1) * 6
|
33 |
+
cont6d_params = data[..., start_indx:end_indx]
|
34 |
+
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
|
35 |
+
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
|
36 |
+
cont6d_params = cont6d_params.view(-1, joints_num, 6)
|
37 |
+
|
38 |
+
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)
|
39 |
+
|
40 |
+
return positions
|
41 |
+
|
42 |
+
|
43 |
+
def recover_from_ric(data, joints_num):
|
44 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
45 |
+
positions = data[..., 4:(joints_num - 1) * 3 + 4]
|
46 |
+
positions = positions.view(positions.shape[:-1] + (-1, 3))
|
47 |
+
|
48 |
+
'''Add Y-axis rotation to local joints'''
|
49 |
+
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions)
|
50 |
+
|
51 |
+
'''Add root XZ to joints'''
|
52 |
+
positions[..., 0] += r_pos[..., 0:1]
|
53 |
+
positions[..., 2] += r_pos[..., 2:3]
|
54 |
+
|
55 |
+
'''Concate root and joints'''
|
56 |
+
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
|
57 |
+
|
58 |
+
return positions
|
59 |
+
|
VQ-Trans/utils/paramUtil.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
# Define a kinematic tree for the skeletal struture
|
4 |
+
kit_kinematic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]]
|
5 |
+
|
6 |
+
kit_raw_offsets = np.array(
|
7 |
+
[
|
8 |
+
[0, 0, 0],
|
9 |
+
[0, 1, 0],
|
10 |
+
[0, 1, 0],
|
11 |
+
[0, 1, 0],
|
12 |
+
[0, 1, 0],
|
13 |
+
[1, 0, 0],
|
14 |
+
[0, -1, 0],
|
15 |
+
[0, -1, 0],
|
16 |
+
[-1, 0, 0],
|
17 |
+
[0, -1, 0],
|
18 |
+
[0, -1, 0],
|
19 |
+
[1, 0, 0],
|
20 |
+
[0, -1, 0],
|
21 |
+
[0, -1, 0],
|
22 |
+
[0, 0, 1],
|
23 |
+
[0, 0, 1],
|
24 |
+
[-1, 0, 0],
|
25 |
+
[0, -1, 0],
|
26 |
+
[0, -1, 0],
|
27 |
+
[0, 0, 1],
|
28 |
+
[0, 0, 1]
|
29 |
+
]
|
30 |
+
)
|
31 |
+
|
32 |
+
t2m_raw_offsets = np.array([[0,0,0],
|
33 |
+
[1,0,0],
|
34 |
+
[-1,0,0],
|
35 |
+
[0,1,0],
|
36 |
+
[0,-1,0],
|
37 |
+
[0,-1,0],
|
38 |
+
[0,1,0],
|
39 |
+
[0,-1,0],
|
40 |
+
[0,-1,0],
|
41 |
+
[0,1,0],
|
42 |
+
[0,0,1],
|
43 |
+
[0,0,1],
|
44 |
+
[0,1,0],
|
45 |
+
[1,0,0],
|
46 |
+
[-1,0,0],
|
47 |
+
[0,0,1],
|
48 |
+
[0,-1,0],
|
49 |
+
[0,-1,0],
|
50 |
+
[0,-1,0],
|
51 |
+
[0,-1,0],
|
52 |
+
[0,-1,0],
|
53 |
+
[0,-1,0]])
|
54 |
+
|
55 |
+
t2m_kinematic_chain = [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
|
56 |
+
t2m_left_hand_chain = [[20, 22, 23, 24], [20, 34, 35, 36], [20, 25, 26, 27], [20, 31, 32, 33], [20, 28, 29, 30]]
|
57 |
+
t2m_right_hand_chain = [[21, 43, 44, 45], [21, 46, 47, 48], [21, 40, 41, 42], [21, 37, 38, 39], [21, 49, 50, 51]]
|
58 |
+
|
59 |
+
|
60 |
+
kit_tgt_skel_id = '03950'
|
61 |
+
|
62 |
+
t2m_tgt_skel_id = '000021'
|
63 |
+
|
VQ-Trans/utils/quaternion.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2018-present, Facebook, Inc.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
_EPS4 = np.finfo(float).eps * 4.0
|
12 |
+
|
13 |
+
_FLOAT_EPS = np.finfo(np.float).eps
|
14 |
+
|
15 |
+
# PyTorch-backed implementations
|
16 |
+
def qinv(q):
|
17 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
18 |
+
mask = torch.ones_like(q)
|
19 |
+
mask[..., 1:] = -mask[..., 1:]
|
20 |
+
return q * mask
|
21 |
+
|
22 |
+
|
23 |
+
def qinv_np(q):
|
24 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
25 |
+
return qinv(torch.from_numpy(q).float()).numpy()
|
26 |
+
|
27 |
+
|
28 |
+
def qnormalize(q):
|
29 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
30 |
+
return q / torch.norm(q, dim=-1, keepdim=True)
|
31 |
+
|
32 |
+
|
33 |
+
def qmul(q, r):
|
34 |
+
"""
|
35 |
+
Multiply quaternion(s) q with quaternion(s) r.
|
36 |
+
Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions.
|
37 |
+
Returns q*r as a tensor of shape (*, 4).
|
38 |
+
"""
|
39 |
+
assert q.shape[-1] == 4
|
40 |
+
assert r.shape[-1] == 4
|
41 |
+
|
42 |
+
original_shape = q.shape
|
43 |
+
|
44 |
+
# Compute outer product
|
45 |
+
terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4))
|
46 |
+
|
47 |
+
w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3]
|
48 |
+
x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2]
|
49 |
+
y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1]
|
50 |
+
z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0]
|
51 |
+
return torch.stack((w, x, y, z), dim=1).view(original_shape)
|
52 |
+
|
53 |
+
|
54 |
+
def qrot(q, v):
|
55 |
+
"""
|
56 |
+
Rotate vector(s) v about the rotation described by quaternion(s) q.
|
57 |
+
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
|
58 |
+
where * denotes any number of dimensions.
|
59 |
+
Returns a tensor of shape (*, 3).
|
60 |
+
"""
|
61 |
+
assert q.shape[-1] == 4
|
62 |
+
assert v.shape[-1] == 3
|
63 |
+
assert q.shape[:-1] == v.shape[:-1]
|
64 |
+
|
65 |
+
original_shape = list(v.shape)
|
66 |
+
# print(q.shape)
|
67 |
+
q = q.contiguous().view(-1, 4)
|
68 |
+
v = v.contiguous().view(-1, 3)
|
69 |
+
|
70 |
+
qvec = q[:, 1:]
|
71 |
+
uv = torch.cross(qvec, v, dim=1)
|
72 |
+
uuv = torch.cross(qvec, uv, dim=1)
|
73 |
+
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
|
74 |
+
|
75 |
+
|
76 |
+
def qeuler(q, order, epsilon=0, deg=True):
|
77 |
+
"""
|
78 |
+
Convert quaternion(s) q to Euler angles.
|
79 |
+
Expects a tensor of shape (*, 4), where * denotes any number of dimensions.
|
80 |
+
Returns a tensor of shape (*, 3).
|
81 |
+
"""
|
82 |
+
assert q.shape[-1] == 4
|
83 |
+
|
84 |
+
original_shape = list(q.shape)
|
85 |
+
original_shape[-1] = 3
|
86 |
+
q = q.view(-1, 4)
|
87 |
+
|
88 |
+
q0 = q[:, 0]
|
89 |
+
q1 = q[:, 1]
|
90 |
+
q2 = q[:, 2]
|
91 |
+
q3 = q[:, 3]
|
92 |
+
|
93 |
+
if order == 'xyz':
|
94 |
+
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
95 |
+
y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon))
|
96 |
+
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
|
97 |
+
elif order == 'yzx':
|
98 |
+
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
99 |
+
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
|
100 |
+
z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon))
|
101 |
+
elif order == 'zxy':
|
102 |
+
x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon))
|
103 |
+
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
104 |
+
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3))
|
105 |
+
elif order == 'xzy':
|
106 |
+
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
107 |
+
y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
|
108 |
+
z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon))
|
109 |
+
elif order == 'yxz':
|
110 |
+
x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon))
|
111 |
+
y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2))
|
112 |
+
z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
113 |
+
elif order == 'zyx':
|
114 |
+
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
115 |
+
y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon))
|
116 |
+
z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
|
117 |
+
else:
|
118 |
+
raise
|
119 |
+
|
120 |
+
if deg:
|
121 |
+
return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi
|
122 |
+
else:
|
123 |
+
return torch.stack((x, y, z), dim=1).view(original_shape)
|
124 |
+
|
125 |
+
|
126 |
+
# Numpy-backed implementations
|
127 |
+
|
128 |
+
def qmul_np(q, r):
|
129 |
+
q = torch.from_numpy(q).contiguous().float()
|
130 |
+
r = torch.from_numpy(r).contiguous().float()
|
131 |
+
return qmul(q, r).numpy()
|
132 |
+
|
133 |
+
|
134 |
+
def qrot_np(q, v):
|
135 |
+
q = torch.from_numpy(q).contiguous().float()
|
136 |
+
v = torch.from_numpy(v).contiguous().float()
|
137 |
+
return qrot(q, v).numpy()
|
138 |
+
|
139 |
+
|
140 |
+
def qeuler_np(q, order, epsilon=0, use_gpu=False):
|
141 |
+
if use_gpu:
|
142 |
+
q = torch.from_numpy(q).cuda().float()
|
143 |
+
return qeuler(q, order, epsilon).cpu().numpy()
|
144 |
+
else:
|
145 |
+
q = torch.from_numpy(q).contiguous().float()
|
146 |
+
return qeuler(q, order, epsilon).numpy()
|
147 |
+
|
148 |
+
|
149 |
+
def qfix(q):
|
150 |
+
"""
|
151 |
+
Enforce quaternion continuity across the time dimension by selecting
|
152 |
+
the representation (q or -q) with minimal distance (or, equivalently, maximal dot product)
|
153 |
+
between two consecutive frames.
|
154 |
+
|
155 |
+
Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints.
|
156 |
+
Returns a tensor of the same shape.
|
157 |
+
"""
|
158 |
+
assert len(q.shape) == 3
|
159 |
+
assert q.shape[-1] == 4
|
160 |
+
|
161 |
+
result = q.copy()
|
162 |
+
dot_products = np.sum(q[1:] * q[:-1], axis=2)
|
163 |
+
mask = dot_products < 0
|
164 |
+
mask = (np.cumsum(mask, axis=0) % 2).astype(bool)
|
165 |
+
result[1:][mask] *= -1
|
166 |
+
return result
|
167 |
+
|
168 |
+
|
169 |
+
def euler2quat(e, order, deg=True):
|
170 |
+
"""
|
171 |
+
Convert Euler angles to quaternions.
|
172 |
+
"""
|
173 |
+
assert e.shape[-1] == 3
|
174 |
+
|
175 |
+
original_shape = list(e.shape)
|
176 |
+
original_shape[-1] = 4
|
177 |
+
|
178 |
+
e = e.view(-1, 3)
|
179 |
+
|
180 |
+
## if euler angles in degrees
|
181 |
+
if deg:
|
182 |
+
e = e * np.pi / 180.
|
183 |
+
|
184 |
+
x = e[:, 0]
|
185 |
+
y = e[:, 1]
|
186 |
+
z = e[:, 2]
|
187 |
+
|
188 |
+
rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1)
|
189 |
+
ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1)
|
190 |
+
rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1)
|
191 |
+
|
192 |
+
result = None
|
193 |
+
for coord in order:
|
194 |
+
if coord == 'x':
|
195 |
+
r = rx
|
196 |
+
elif coord == 'y':
|
197 |
+
r = ry
|
198 |
+
elif coord == 'z':
|
199 |
+
r = rz
|
200 |
+
else:
|
201 |
+
raise
|
202 |
+
if result is None:
|
203 |
+
result = r
|
204 |
+
else:
|
205 |
+
result = qmul(result, r)
|
206 |
+
|
207 |
+
# Reverse antipodal representation to have a non-negative "w"
|
208 |
+
if order in ['xyz', 'yzx', 'zxy']:
|
209 |
+
result *= -1
|
210 |
+
|
211 |
+
return result.view(original_shape)
|
212 |
+
|
213 |
+
|
214 |
+
def expmap_to_quaternion(e):
|
215 |
+
"""
|
216 |
+
Convert axis-angle rotations (aka exponential maps) to quaternions.
|
217 |
+
Stable formula from "Practical Parameterization of Rotations Using the Exponential Map".
|
218 |
+
Expects a tensor of shape (*, 3), where * denotes any number of dimensions.
|
219 |
+
Returns a tensor of shape (*, 4).
|
220 |
+
"""
|
221 |
+
assert e.shape[-1] == 3
|
222 |
+
|
223 |
+
original_shape = list(e.shape)
|
224 |
+
original_shape[-1] = 4
|
225 |
+
e = e.reshape(-1, 3)
|
226 |
+
|
227 |
+
theta = np.linalg.norm(e, axis=1).reshape(-1, 1)
|
228 |
+
w = np.cos(0.5 * theta).reshape(-1, 1)
|
229 |
+
xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e
|
230 |
+
return np.concatenate((w, xyz), axis=1).reshape(original_shape)
|
231 |
+
|
232 |
+
|
233 |
+
def euler_to_quaternion(e, order):
|
234 |
+
"""
|
235 |
+
Convert Euler angles to quaternions.
|
236 |
+
"""
|
237 |
+
assert e.shape[-1] == 3
|
238 |
+
|
239 |
+
original_shape = list(e.shape)
|
240 |
+
original_shape[-1] = 4
|
241 |
+
|
242 |
+
e = e.reshape(-1, 3)
|
243 |
+
|
244 |
+
x = e[:, 0]
|
245 |
+
y = e[:, 1]
|
246 |
+
z = e[:, 2]
|
247 |
+
|
248 |
+
rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1)
|
249 |
+
ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1)
|
250 |
+
rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1)
|
251 |
+
|
252 |
+
result = None
|
253 |
+
for coord in order:
|
254 |
+
if coord == 'x':
|
255 |
+
r = rx
|
256 |
+
elif coord == 'y':
|
257 |
+
r = ry
|
258 |
+
elif coord == 'z':
|
259 |
+
r = rz
|
260 |
+
else:
|
261 |
+
raise
|
262 |
+
if result is None:
|
263 |
+
result = r
|
264 |
+
else:
|
265 |
+
result = qmul_np(result, r)
|
266 |
+
|
267 |
+
# Reverse antipodal representation to have a non-negative "w"
|
268 |
+
if order in ['xyz', 'yzx', 'zxy']:
|
269 |
+
result *= -1
|
270 |
+
|
271 |
+
return result.reshape(original_shape)
|
272 |
+
|
273 |
+
|
274 |
+
def quaternion_to_matrix(quaternions):
|
275 |
+
"""
|
276 |
+
Convert rotations given as quaternions to rotation matrices.
|
277 |
+
Args:
|
278 |
+
quaternions: quaternions with real part first,
|
279 |
+
as tensor of shape (..., 4).
|
280 |
+
Returns:
|
281 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
282 |
+
"""
|
283 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
284 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
285 |
+
|
286 |
+
o = torch.stack(
|
287 |
+
(
|
288 |
+
1 - two_s * (j * j + k * k),
|
289 |
+
two_s * (i * j - k * r),
|
290 |
+
two_s * (i * k + j * r),
|
291 |
+
two_s * (i * j + k * r),
|
292 |
+
1 - two_s * (i * i + k * k),
|
293 |
+
two_s * (j * k - i * r),
|
294 |
+
two_s * (i * k - j * r),
|
295 |
+
two_s * (j * k + i * r),
|
296 |
+
1 - two_s * (i * i + j * j),
|
297 |
+
),
|
298 |
+
-1,
|
299 |
+
)
|
300 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
301 |
+
|
302 |
+
|
303 |
+
def quaternion_to_matrix_np(quaternions):
|
304 |
+
q = torch.from_numpy(quaternions).contiguous().float()
|
305 |
+
return quaternion_to_matrix(q).numpy()
|
306 |
+
|
307 |
+
|
308 |
+
def quaternion_to_cont6d_np(quaternions):
|
309 |
+
rotation_mat = quaternion_to_matrix_np(quaternions)
|
310 |
+
cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1)
|
311 |
+
return cont_6d
|
312 |
+
|
313 |
+
|
314 |
+
def quaternion_to_cont6d(quaternions):
|
315 |
+
rotation_mat = quaternion_to_matrix(quaternions)
|
316 |
+
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1)
|
317 |
+
return cont_6d
|
318 |
+
|
319 |
+
|
320 |
+
def cont6d_to_matrix(cont6d):
|
321 |
+
assert cont6d.shape[-1] == 6, "The last dimension must be 6"
|
322 |
+
x_raw = cont6d[..., 0:3]
|
323 |
+
y_raw = cont6d[..., 3:6]
|
324 |
+
|
325 |
+
x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True)
|
326 |
+
z = torch.cross(x, y_raw, dim=-1)
|
327 |
+
z = z / torch.norm(z, dim=-1, keepdim=True)
|
328 |
+
|
329 |
+
y = torch.cross(z, x, dim=-1)
|
330 |
+
|
331 |
+
x = x[..., None]
|
332 |
+
y = y[..., None]
|
333 |
+
z = z[..., None]
|
334 |
+
|
335 |
+
mat = torch.cat([x, y, z], dim=-1)
|
336 |
+
return mat
|
337 |
+
|
338 |
+
|
339 |
+
def cont6d_to_matrix_np(cont6d):
|
340 |
+
q = torch.from_numpy(cont6d).contiguous().float()
|
341 |
+
return cont6d_to_matrix(q).numpy()
|
342 |
+
|
343 |
+
|
344 |
+
def qpow(q0, t, dtype=torch.float):
|
345 |
+
''' q0 : tensor of quaternions
|
346 |
+
t: tensor of powers
|
347 |
+
'''
|
348 |
+
q0 = qnormalize(q0)
|
349 |
+
theta0 = torch.acos(q0[..., 0])
|
350 |
+
|
351 |
+
## if theta0 is close to zero, add epsilon to avoid NaNs
|
352 |
+
mask = (theta0 <= 10e-10) * (theta0 >= -10e-10)
|
353 |
+
theta0 = (1 - mask) * theta0 + mask * 10e-10
|
354 |
+
v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1)
|
355 |
+
|
356 |
+
if isinstance(t, torch.Tensor):
|
357 |
+
q = torch.zeros(t.shape + q0.shape)
|
358 |
+
theta = t.view(-1, 1) * theta0.view(1, -1)
|
359 |
+
else: ## if t is a number
|
360 |
+
q = torch.zeros(q0.shape)
|
361 |
+
theta = t * theta0
|
362 |
+
|
363 |
+
q[..., 0] = torch.cos(theta)
|
364 |
+
q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1)
|
365 |
+
|
366 |
+
return q.to(dtype)
|
367 |
+
|
368 |
+
|
369 |
+
def qslerp(q0, q1, t):
|
370 |
+
'''
|
371 |
+
q0: starting quaternion
|
372 |
+
q1: ending quaternion
|
373 |
+
t: array of points along the way
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
Tensor of Slerps: t.shape + q0.shape
|
377 |
+
'''
|
378 |
+
|
379 |
+
q0 = qnormalize(q0)
|
380 |
+
q1 = qnormalize(q1)
|
381 |
+
q_ = qpow(qmul(q1, qinv(q0)), t)
|
382 |
+
|
383 |
+
return qmul(q_,
|
384 |
+
q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous())
|
385 |
+
|
386 |
+
|
387 |
+
def qbetween(v0, v1):
|
388 |
+
'''
|
389 |
+
find the quaternion used to rotate v0 to v1
|
390 |
+
'''
|
391 |
+
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
|
392 |
+
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
|
393 |
+
|
394 |
+
v = torch.cross(v0, v1)
|
395 |
+
w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1,
|
396 |
+
keepdim=True)
|
397 |
+
return qnormalize(torch.cat([w, v], dim=-1))
|
398 |
+
|
399 |
+
|
400 |
+
def qbetween_np(v0, v1):
|
401 |
+
'''
|
402 |
+
find the quaternion used to rotate v0 to v1
|
403 |
+
'''
|
404 |
+
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
|
405 |
+
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
|
406 |
+
|
407 |
+
v0 = torch.from_numpy(v0).float()
|
408 |
+
v1 = torch.from_numpy(v1).float()
|
409 |
+
return qbetween(v0, v1).numpy()
|
410 |
+
|
411 |
+
|
412 |
+
def lerp(p0, p1, t):
|
413 |
+
if not isinstance(t, torch.Tensor):
|
414 |
+
t = torch.Tensor([t])
|
415 |
+
|
416 |
+
new_shape = t.shape + p0.shape
|
417 |
+
new_view_t = t.shape + torch.Size([1] * len(p0.shape))
|
418 |
+
new_view_p = torch.Size([1] * len(t.shape)) + p0.shape
|
419 |
+
p0 = p0.view(new_view_p).expand(new_shape)
|
420 |
+
p1 = p1.view(new_view_p).expand(new_shape)
|
421 |
+
t = t.view(new_view_t).expand(new_shape)
|
422 |
+
|
423 |
+
return p0 + t * (p1 - p0)
|
VQ-Trans/utils/rotation_conversions.py
ADDED
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
2 |
+
# Check PYTORCH3D_LICENCE before use
|
3 |
+
|
4 |
+
import functools
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
"""
|
12 |
+
The transformation matrices returned from the functions in this file assume
|
13 |
+
the points on which the transformation will be applied are column vectors.
|
14 |
+
i.e. the R matrix is structured as
|
15 |
+
R = [
|
16 |
+
[Rxx, Rxy, Rxz],
|
17 |
+
[Ryx, Ryy, Ryz],
|
18 |
+
[Rzx, Rzy, Rzz],
|
19 |
+
] # (3, 3)
|
20 |
+
This matrix can be applied to column vectors by post multiplication
|
21 |
+
by the points e.g.
|
22 |
+
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point
|
23 |
+
transformed_points = R * points
|
24 |
+
To apply the same matrix to points which are row vectors, the R matrix
|
25 |
+
can be transposed and pre multiplied by the points:
|
26 |
+
e.g.
|
27 |
+
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point
|
28 |
+
transformed_points = points * R.transpose(1, 0)
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
def quaternion_to_matrix(quaternions):
|
33 |
+
"""
|
34 |
+
Convert rotations given as quaternions to rotation matrices.
|
35 |
+
Args:
|
36 |
+
quaternions: quaternions with real part first,
|
37 |
+
as tensor of shape (..., 4).
|
38 |
+
Returns:
|
39 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
40 |
+
"""
|
41 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
42 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
43 |
+
|
44 |
+
o = torch.stack(
|
45 |
+
(
|
46 |
+
1 - two_s * (j * j + k * k),
|
47 |
+
two_s * (i * j - k * r),
|
48 |
+
two_s * (i * k + j * r),
|
49 |
+
two_s * (i * j + k * r),
|
50 |
+
1 - two_s * (i * i + k * k),
|
51 |
+
two_s * (j * k - i * r),
|
52 |
+
two_s * (i * k - j * r),
|
53 |
+
two_s * (j * k + i * r),
|
54 |
+
1 - two_s * (i * i + j * j),
|
55 |
+
),
|
56 |
+
-1,
|
57 |
+
)
|
58 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
59 |
+
|
60 |
+
|
61 |
+
def _copysign(a, b):
|
62 |
+
"""
|
63 |
+
Return a tensor where each element has the absolute value taken from the,
|
64 |
+
corresponding element of a, with sign taken from the corresponding
|
65 |
+
element of b. This is like the standard copysign floating-point operation,
|
66 |
+
but is not careful about negative 0 and NaN.
|
67 |
+
Args:
|
68 |
+
a: source tensor.
|
69 |
+
b: tensor whose signs will be used, of the same shape as a.
|
70 |
+
Returns:
|
71 |
+
Tensor of the same shape as a with the signs of b.
|
72 |
+
"""
|
73 |
+
signs_differ = (a < 0) != (b < 0)
|
74 |
+
return torch.where(signs_differ, -a, a)
|
75 |
+
|
76 |
+
|
77 |
+
def _sqrt_positive_part(x):
|
78 |
+
"""
|
79 |
+
Returns torch.sqrt(torch.max(0, x))
|
80 |
+
but with a zero subgradient where x is 0.
|
81 |
+
"""
|
82 |
+
ret = torch.zeros_like(x)
|
83 |
+
positive_mask = x > 0
|
84 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
85 |
+
return ret
|
86 |
+
|
87 |
+
|
88 |
+
def matrix_to_quaternion(matrix):
|
89 |
+
"""
|
90 |
+
Convert rotations given as rotation matrices to quaternions.
|
91 |
+
Args:
|
92 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
93 |
+
Returns:
|
94 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
95 |
+
"""
|
96 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
97 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
98 |
+
m00 = matrix[..., 0, 0]
|
99 |
+
m11 = matrix[..., 1, 1]
|
100 |
+
m22 = matrix[..., 2, 2]
|
101 |
+
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
|
102 |
+
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
|
103 |
+
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
|
104 |
+
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
|
105 |
+
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
|
106 |
+
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
|
107 |
+
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
|
108 |
+
return torch.stack((o0, o1, o2, o3), -1)
|
109 |
+
|
110 |
+
|
111 |
+
def _axis_angle_rotation(axis: str, angle):
|
112 |
+
"""
|
113 |
+
Return the rotation matrices for one of the rotations about an axis
|
114 |
+
of which Euler angles describe, for each value of the angle given.
|
115 |
+
Args:
|
116 |
+
axis: Axis label "X" or "Y or "Z".
|
117 |
+
angle: any shape tensor of Euler angles in radians
|
118 |
+
Returns:
|
119 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
120 |
+
"""
|
121 |
+
|
122 |
+
cos = torch.cos(angle)
|
123 |
+
sin = torch.sin(angle)
|
124 |
+
one = torch.ones_like(angle)
|
125 |
+
zero = torch.zeros_like(angle)
|
126 |
+
|
127 |
+
if axis == "X":
|
128 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
129 |
+
if axis == "Y":
|
130 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
131 |
+
if axis == "Z":
|
132 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
133 |
+
|
134 |
+
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
135 |
+
|
136 |
+
|
137 |
+
def euler_angles_to_matrix(euler_angles, convention: str):
|
138 |
+
"""
|
139 |
+
Convert rotations given as Euler angles in radians to rotation matrices.
|
140 |
+
Args:
|
141 |
+
euler_angles: Euler angles in radians as tensor of shape (..., 3).
|
142 |
+
convention: Convention string of three uppercase letters from
|
143 |
+
{"X", "Y", and "Z"}.
|
144 |
+
Returns:
|
145 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
146 |
+
"""
|
147 |
+
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
|
148 |
+
raise ValueError("Invalid input euler angles.")
|
149 |
+
if len(convention) != 3:
|
150 |
+
raise ValueError("Convention must have 3 letters.")
|
151 |
+
if convention[1] in (convention[0], convention[2]):
|
152 |
+
raise ValueError(f"Invalid convention {convention}.")
|
153 |
+
for letter in convention:
|
154 |
+
if letter not in ("X", "Y", "Z"):
|
155 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
156 |
+
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
|
157 |
+
return functools.reduce(torch.matmul, matrices)
|
158 |
+
|
159 |
+
|
160 |
+
def _angle_from_tan(
|
161 |
+
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
|
162 |
+
):
|
163 |
+
"""
|
164 |
+
Extract the first or third Euler angle from the two members of
|
165 |
+
the matrix which are positive constant times its sine and cosine.
|
166 |
+
Args:
|
167 |
+
axis: Axis label "X" or "Y or "Z" for the angle we are finding.
|
168 |
+
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
|
169 |
+
convention.
|
170 |
+
data: Rotation matrices as tensor of shape (..., 3, 3).
|
171 |
+
horizontal: Whether we are looking for the angle for the third axis,
|
172 |
+
which means the relevant entries are in the same row of the
|
173 |
+
rotation matrix. If not, they are in the same column.
|
174 |
+
tait_bryan: Whether the first and third axes in the convention differ.
|
175 |
+
Returns:
|
176 |
+
Euler Angles in radians for each matrix in data as a tensor
|
177 |
+
of shape (...).
|
178 |
+
"""
|
179 |
+
|
180 |
+
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
|
181 |
+
if horizontal:
|
182 |
+
i2, i1 = i1, i2
|
183 |
+
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
|
184 |
+
if horizontal == even:
|
185 |
+
return torch.atan2(data[..., i1], data[..., i2])
|
186 |
+
if tait_bryan:
|
187 |
+
return torch.atan2(-data[..., i2], data[..., i1])
|
188 |
+
return torch.atan2(data[..., i2], -data[..., i1])
|
189 |
+
|
190 |
+
|
191 |
+
def _index_from_letter(letter: str):
|
192 |
+
if letter == "X":
|
193 |
+
return 0
|
194 |
+
if letter == "Y":
|
195 |
+
return 1
|
196 |
+
if letter == "Z":
|
197 |
+
return 2
|
198 |
+
|
199 |
+
|
200 |
+
def matrix_to_euler_angles(matrix, convention: str):
|
201 |
+
"""
|
202 |
+
Convert rotations given as rotation matrices to Euler angles in radians.
|
203 |
+
Args:
|
204 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
205 |
+
convention: Convention string of three uppercase letters.
|
206 |
+
Returns:
|
207 |
+
Euler angles in radians as tensor of shape (..., 3).
|
208 |
+
"""
|
209 |
+
if len(convention) != 3:
|
210 |
+
raise ValueError("Convention must have 3 letters.")
|
211 |
+
if convention[1] in (convention[0], convention[2]):
|
212 |
+
raise ValueError(f"Invalid convention {convention}.")
|
213 |
+
for letter in convention:
|
214 |
+
if letter not in ("X", "Y", "Z"):
|
215 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
216 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
217 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
218 |
+
i0 = _index_from_letter(convention[0])
|
219 |
+
i2 = _index_from_letter(convention[2])
|
220 |
+
tait_bryan = i0 != i2
|
221 |
+
if tait_bryan:
|
222 |
+
central_angle = torch.asin(
|
223 |
+
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
central_angle = torch.acos(matrix[..., i0, i0])
|
227 |
+
|
228 |
+
o = (
|
229 |
+
_angle_from_tan(
|
230 |
+
convention[0], convention[1], matrix[..., i2], False, tait_bryan
|
231 |
+
),
|
232 |
+
central_angle,
|
233 |
+
_angle_from_tan(
|
234 |
+
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
|
235 |
+
),
|
236 |
+
)
|
237 |
+
return torch.stack(o, -1)
|
238 |
+
|
239 |
+
|
240 |
+
def random_quaternions(
|
241 |
+
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
Generate random quaternions representing rotations,
|
245 |
+
i.e. versors with nonnegative real part.
|
246 |
+
Args:
|
247 |
+
n: Number of quaternions in a batch to return.
|
248 |
+
dtype: Type to return.
|
249 |
+
device: Desired device of returned tensor. Default:
|
250 |
+
uses the current device for the default tensor type.
|
251 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
252 |
+
flag set.
|
253 |
+
Returns:
|
254 |
+
Quaternions as tensor of shape (N, 4).
|
255 |
+
"""
|
256 |
+
o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad)
|
257 |
+
s = (o * o).sum(1)
|
258 |
+
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None]
|
259 |
+
return o
|
260 |
+
|
261 |
+
|
262 |
+
def random_rotations(
|
263 |
+
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
264 |
+
):
|
265 |
+
"""
|
266 |
+
Generate random rotations as 3x3 rotation matrices.
|
267 |
+
Args:
|
268 |
+
n: Number of rotation matrices in a batch to return.
|
269 |
+
dtype: Type to return.
|
270 |
+
device: Device of returned tensor. Default: if None,
|
271 |
+
uses the current device for the default tensor type.
|
272 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
273 |
+
flag set.
|
274 |
+
Returns:
|
275 |
+
Rotation matrices as tensor of shape (n, 3, 3).
|
276 |
+
"""
|
277 |
+
quaternions = random_quaternions(
|
278 |
+
n, dtype=dtype, device=device, requires_grad=requires_grad
|
279 |
+
)
|
280 |
+
return quaternion_to_matrix(quaternions)
|
281 |
+
|
282 |
+
|
283 |
+
def random_rotation(
|
284 |
+
dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
285 |
+
):
|
286 |
+
"""
|
287 |
+
Generate a single random 3x3 rotation matrix.
|
288 |
+
Args:
|
289 |
+
dtype: Type to return
|
290 |
+
device: Device of returned tensor. Default: if None,
|
291 |
+
uses the current device for the default tensor type
|
292 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
293 |
+
flag set
|
294 |
+
Returns:
|
295 |
+
Rotation matrix as tensor of shape (3, 3).
|
296 |
+
"""
|
297 |
+
return random_rotations(1, dtype, device, requires_grad)[0]
|
298 |
+
|
299 |
+
|
300 |
+
def standardize_quaternion(quaternions):
|
301 |
+
"""
|
302 |
+
Convert a unit quaternion to a standard form: one in which the real
|
303 |
+
part is non negative.
|
304 |
+
Args:
|
305 |
+
quaternions: Quaternions with real part first,
|
306 |
+
as tensor of shape (..., 4).
|
307 |
+
Returns:
|
308 |
+
Standardized quaternions as tensor of shape (..., 4).
|
309 |
+
"""
|
310 |
+
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
|
311 |
+
|
312 |
+
|
313 |
+
def quaternion_raw_multiply(a, b):
|
314 |
+
"""
|
315 |
+
Multiply two quaternions.
|
316 |
+
Usual torch rules for broadcasting apply.
|
317 |
+
Args:
|
318 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
319 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
320 |
+
Returns:
|
321 |
+
The product of a and b, a tensor of quaternions shape (..., 4).
|
322 |
+
"""
|
323 |
+
aw, ax, ay, az = torch.unbind(a, -1)
|
324 |
+
bw, bx, by, bz = torch.unbind(b, -1)
|
325 |
+
ow = aw * bw - ax * bx - ay * by - az * bz
|
326 |
+
ox = aw * bx + ax * bw + ay * bz - az * by
|
327 |
+
oy = aw * by - ax * bz + ay * bw + az * bx
|
328 |
+
oz = aw * bz + ax * by - ay * bx + az * bw
|
329 |
+
return torch.stack((ow, ox, oy, oz), -1)
|
330 |
+
|
331 |
+
|
332 |
+
def quaternion_multiply(a, b):
|
333 |
+
"""
|
334 |
+
Multiply two quaternions representing rotations, returning the quaternion
|
335 |
+
representing their composition, i.e. the versor with nonnegative real part.
|
336 |
+
Usual torch rules for broadcasting apply.
|
337 |
+
Args:
|
338 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
339 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
340 |
+
Returns:
|
341 |
+
The product of a and b, a tensor of quaternions of shape (..., 4).
|
342 |
+
"""
|
343 |
+
ab = quaternion_raw_multiply(a, b)
|
344 |
+
return standardize_quaternion(ab)
|
345 |
+
|
346 |
+
|
347 |
+
def quaternion_invert(quaternion):
|
348 |
+
"""
|
349 |
+
Given a quaternion representing rotation, get the quaternion representing
|
350 |
+
its inverse.
|
351 |
+
Args:
|
352 |
+
quaternion: Quaternions as tensor of shape (..., 4), with real part
|
353 |
+
first, which must be versors (unit quaternions).
|
354 |
+
Returns:
|
355 |
+
The inverse, a tensor of quaternions of shape (..., 4).
|
356 |
+
"""
|
357 |
+
|
358 |
+
return quaternion * quaternion.new_tensor([1, -1, -1, -1])
|
359 |
+
|
360 |
+
|
361 |
+
def quaternion_apply(quaternion, point):
|
362 |
+
"""
|
363 |
+
Apply the rotation given by a quaternion to a 3D point.
|
364 |
+
Usual torch rules for broadcasting apply.
|
365 |
+
Args:
|
366 |
+
quaternion: Tensor of quaternions, real part first, of shape (..., 4).
|
367 |
+
point: Tensor of 3D points of shape (..., 3).
|
368 |
+
Returns:
|
369 |
+
Tensor of rotated points of shape (..., 3).
|
370 |
+
"""
|
371 |
+
if point.size(-1) != 3:
|
372 |
+
raise ValueError(f"Points are not in 3D, f{point.shape}.")
|
373 |
+
real_parts = point.new_zeros(point.shape[:-1] + (1,))
|
374 |
+
point_as_quaternion = torch.cat((real_parts, point), -1)
|
375 |
+
out = quaternion_raw_multiply(
|
376 |
+
quaternion_raw_multiply(quaternion, point_as_quaternion),
|
377 |
+
quaternion_invert(quaternion),
|
378 |
+
)
|
379 |
+
return out[..., 1:]
|
380 |
+
|
381 |
+
|
382 |
+
def axis_angle_to_matrix(axis_angle):
|
383 |
+
"""
|
384 |
+
Convert rotations given as axis/angle to rotation matrices.
|
385 |
+
Args:
|
386 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
387 |
+
as a tensor of shape (..., 3), where the magnitude is
|
388 |
+
the angle turned anticlockwise in radians around the
|
389 |
+
vector's direction.
|
390 |
+
Returns:
|
391 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
392 |
+
"""
|
393 |
+
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
|
394 |
+
|
395 |
+
|
396 |
+
def matrix_to_axis_angle(matrix):
|
397 |
+
"""
|
398 |
+
Convert rotations given as rotation matrices to axis/angle.
|
399 |
+
Args:
|
400 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
401 |
+
Returns:
|
402 |
+
Rotations given as a vector in axis angle form, as a tensor
|
403 |
+
of shape (..., 3), where the magnitude is the angle
|
404 |
+
turned anticlockwise in radians around the vector's
|
405 |
+
direction.
|
406 |
+
"""
|
407 |
+
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
|
408 |
+
|
409 |
+
|
410 |
+
def axis_angle_to_quaternion(axis_angle):
|
411 |
+
"""
|
412 |
+
Convert rotations given as axis/angle to quaternions.
|
413 |
+
Args:
|
414 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
415 |
+
as a tensor of shape (..., 3), where the magnitude is
|
416 |
+
the angle turned anticlockwise in radians around the
|
417 |
+
vector's direction.
|
418 |
+
Returns:
|
419 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
420 |
+
"""
|
421 |
+
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
|
422 |
+
half_angles = 0.5 * angles
|
423 |
+
eps = 1e-6
|
424 |
+
small_angles = angles.abs() < eps
|
425 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
426 |
+
sin_half_angles_over_angles[~small_angles] = (
|
427 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
428 |
+
)
|
429 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
430 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
431 |
+
sin_half_angles_over_angles[small_angles] = (
|
432 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
433 |
+
)
|
434 |
+
quaternions = torch.cat(
|
435 |
+
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
|
436 |
+
)
|
437 |
+
return quaternions
|
438 |
+
|
439 |
+
|
440 |
+
def quaternion_to_axis_angle(quaternions):
|
441 |
+
"""
|
442 |
+
Convert rotations given as quaternions to axis/angle.
|
443 |
+
Args:
|
444 |
+
quaternions: quaternions with real part first,
|
445 |
+
as tensor of shape (..., 4).
|
446 |
+
Returns:
|
447 |
+
Rotations given as a vector in axis angle form, as a tensor
|
448 |
+
of shape (..., 3), where the magnitude is the angle
|
449 |
+
turned anticlockwise in radians around the vector's
|
450 |
+
direction.
|
451 |
+
"""
|
452 |
+
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
|
453 |
+
half_angles = torch.atan2(norms, quaternions[..., :1])
|
454 |
+
angles = 2 * half_angles
|
455 |
+
eps = 1e-6
|
456 |
+
small_angles = angles.abs() < eps
|
457 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
458 |
+
sin_half_angles_over_angles[~small_angles] = (
|
459 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
460 |
+
)
|
461 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
462 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
463 |
+
sin_half_angles_over_angles[small_angles] = (
|
464 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
465 |
+
)
|
466 |
+
return quaternions[..., 1:] / sin_half_angles_over_angles
|
467 |
+
|
468 |
+
|
469 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
470 |
+
"""
|
471 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
472 |
+
using Gram--Schmidt orthogonalisation per Section B of [1].
|
473 |
+
Args:
|
474 |
+
d6: 6D rotation representation, of size (*, 6)
|
475 |
+
Returns:
|
476 |
+
batch of rotation matrices of size (*, 3, 3)
|
477 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
478 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
479 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
480 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
481 |
+
"""
|
482 |
+
|
483 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
484 |
+
b1 = F.normalize(a1, dim=-1)
|
485 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
486 |
+
b2 = F.normalize(b2, dim=-1)
|
487 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
488 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
489 |
+
|
490 |
+
|
491 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
492 |
+
"""
|
493 |
+
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
|
494 |
+
by dropping the last row. Note that 6D representation is not unique.
|
495 |
+
Args:
|
496 |
+
matrix: batch of rotation matrices of size (*, 3, 3)
|
497 |
+
Returns:
|
498 |
+
6D rotation representation, of size (*, 6)
|
499 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
500 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
501 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
502 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
503 |
+
"""
|
504 |
+
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
|
505 |
+
|
506 |
+
def canonicalize_smplh(poses, trans = None):
|
507 |
+
bs, nframes, njoints = poses.shape[:3]
|
508 |
+
|
509 |
+
global_orient = poses[:, :, 0]
|
510 |
+
|
511 |
+
# first global rotations
|
512 |
+
rot2d = matrix_to_axis_angle(global_orient[:, 0])
|
513 |
+
#rot2d[:, :2] = 0 # Remove the rotation along the vertical axis
|
514 |
+
rot2d = axis_angle_to_matrix(rot2d)
|
515 |
+
|
516 |
+
# Rotate the global rotation to eliminate Z rotations
|
517 |
+
global_orient = torch.einsum("ikj,imkl->imjl", rot2d, global_orient)
|
518 |
+
|
519 |
+
# Construct canonicalized version of x
|
520 |
+
xc = torch.cat((global_orient[:, :, None], poses[:, :, 1:]), dim=2)
|
521 |
+
|
522 |
+
if trans is not None:
|
523 |
+
vel = trans[:, 1:] - trans[:, :-1]
|
524 |
+
# Turn the translation as well
|
525 |
+
vel = torch.einsum("ikj,ilk->ilj", rot2d, vel)
|
526 |
+
trans = torch.cat((torch.zeros(bs, 1, 3, device=vel.device),
|
527 |
+
torch.cumsum(vel, 1)), 1)
|
528 |
+
return xc, trans
|
529 |
+
else:
|
530 |
+
return xc
|
531 |
+
|
532 |
+
|
VQ-Trans/utils/skeleton.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils.quaternion import *
|
2 |
+
import scipy.ndimage.filters as filters
|
3 |
+
|
4 |
+
class Skeleton(object):
|
5 |
+
def __init__(self, offset, kinematic_tree, device):
|
6 |
+
self.device = device
|
7 |
+
self._raw_offset_np = offset.numpy()
|
8 |
+
self._raw_offset = offset.clone().detach().to(device).float()
|
9 |
+
self._kinematic_tree = kinematic_tree
|
10 |
+
self._offset = None
|
11 |
+
self._parents = [0] * len(self._raw_offset)
|
12 |
+
self._parents[0] = -1
|
13 |
+
for chain in self._kinematic_tree:
|
14 |
+
for j in range(1, len(chain)):
|
15 |
+
self._parents[chain[j]] = chain[j-1]
|
16 |
+
|
17 |
+
def njoints(self):
|
18 |
+
return len(self._raw_offset)
|
19 |
+
|
20 |
+
def offset(self):
|
21 |
+
return self._offset
|
22 |
+
|
23 |
+
def set_offset(self, offsets):
|
24 |
+
self._offset = offsets.clone().detach().to(self.device).float()
|
25 |
+
|
26 |
+
def kinematic_tree(self):
|
27 |
+
return self._kinematic_tree
|
28 |
+
|
29 |
+
def parents(self):
|
30 |
+
return self._parents
|
31 |
+
|
32 |
+
# joints (batch_size, joints_num, 3)
|
33 |
+
def get_offsets_joints_batch(self, joints):
|
34 |
+
assert len(joints.shape) == 3
|
35 |
+
_offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
|
36 |
+
for i in range(1, self._raw_offset.shape[0]):
|
37 |
+
_offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]
|
38 |
+
|
39 |
+
self._offset = _offsets.detach()
|
40 |
+
return _offsets
|
41 |
+
|
42 |
+
# joints (joints_num, 3)
|
43 |
+
def get_offsets_joints(self, joints):
|
44 |
+
assert len(joints.shape) == 2
|
45 |
+
_offsets = self._raw_offset.clone()
|
46 |
+
for i in range(1, self._raw_offset.shape[0]):
|
47 |
+
# print(joints.shape)
|
48 |
+
_offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]
|
49 |
+
|
50 |
+
self._offset = _offsets.detach()
|
51 |
+
return _offsets
|
52 |
+
|
53 |
+
# face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
|
54 |
+
# joints (batch_size, joints_num, 3)
|
55 |
+
def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
|
56 |
+
assert len(face_joint_idx) == 4
|
57 |
+
'''Get Forward Direction'''
|
58 |
+
l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
|
59 |
+
across1 = joints[:, r_hip] - joints[:, l_hip]
|
60 |
+
across2 = joints[:, sdr_r] - joints[:, sdr_l]
|
61 |
+
across = across1 + across2
|
62 |
+
across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
|
63 |
+
# print(across1.shape, across2.shape)
|
64 |
+
|
65 |
+
# forward (batch_size, 3)
|
66 |
+
forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
|
67 |
+
if smooth_forward:
|
68 |
+
forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
|
69 |
+
# forward (batch_size, 3)
|
70 |
+
forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
|
71 |
+
|
72 |
+
'''Get Root Rotation'''
|
73 |
+
target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
|
74 |
+
root_quat = qbetween_np(forward, target)
|
75 |
+
|
76 |
+
'''Inverse Kinematics'''
|
77 |
+
# quat_params (batch_size, joints_num, 4)
|
78 |
+
# print(joints.shape[:-1])
|
79 |
+
quat_params = np.zeros(joints.shape[:-1] + (4,))
|
80 |
+
# print(quat_params.shape)
|
81 |
+
root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
|
82 |
+
quat_params[:, 0] = root_quat
|
83 |
+
# quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
|
84 |
+
for chain in self._kinematic_tree:
|
85 |
+
R = root_quat
|
86 |
+
for j in range(len(chain) - 1):
|
87 |
+
# (batch, 3)
|
88 |
+
u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
|
89 |
+
# print(u.shape)
|
90 |
+
# (batch, 3)
|
91 |
+
v = joints[:, chain[j+1]] - joints[:, chain[j]]
|
92 |
+
v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
|
93 |
+
# print(u.shape, v.shape)
|
94 |
+
rot_u_v = qbetween_np(u, v)
|
95 |
+
|
96 |
+
R_loc = qmul_np(qinv_np(R), rot_u_v)
|
97 |
+
|
98 |
+
quat_params[:,chain[j + 1], :] = R_loc
|
99 |
+
R = qmul_np(R, R_loc)
|
100 |
+
|
101 |
+
return quat_params
|
102 |
+
|
103 |
+
# Be sure root joint is at the beginning of kinematic chains
|
104 |
+
def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
|
105 |
+
# quat_params (batch_size, joints_num, 4)
|
106 |
+
# joints (batch_size, joints_num, 3)
|
107 |
+
# root_pos (batch_size, 3)
|
108 |
+
if skel_joints is not None:
|
109 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
110 |
+
if len(self._offset.shape) == 2:
|
111 |
+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
|
112 |
+
joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
|
113 |
+
joints[:, 0] = root_pos
|
114 |
+
for chain in self._kinematic_tree:
|
115 |
+
if do_root_R:
|
116 |
+
R = quat_params[:, 0]
|
117 |
+
else:
|
118 |
+
R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
|
119 |
+
for i in range(1, len(chain)):
|
120 |
+
R = qmul(R, quat_params[:, chain[i]])
|
121 |
+
offset_vec = offsets[:, chain[i]]
|
122 |
+
joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
|
123 |
+
return joints
|
124 |
+
|
125 |
+
# Be sure root joint is at the beginning of kinematic chains
|
126 |
+
def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
|
127 |
+
# quat_params (batch_size, joints_num, 4)
|
128 |
+
# joints (batch_size, joints_num, 3)
|
129 |
+
# root_pos (batch_size, 3)
|
130 |
+
if skel_joints is not None:
|
131 |
+
skel_joints = torch.from_numpy(skel_joints)
|
132 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
133 |
+
if len(self._offset.shape) == 2:
|
134 |
+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
|
135 |
+
offsets = offsets.numpy()
|
136 |
+
joints = np.zeros(quat_params.shape[:-1] + (3,))
|
137 |
+
joints[:, 0] = root_pos
|
138 |
+
for chain in self._kinematic_tree:
|
139 |
+
if do_root_R:
|
140 |
+
R = quat_params[:, 0]
|
141 |
+
else:
|
142 |
+
R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
|
143 |
+
for i in range(1, len(chain)):
|
144 |
+
R = qmul_np(R, quat_params[:, chain[i]])
|
145 |
+
offset_vec = offsets[:, chain[i]]
|
146 |
+
joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
|
147 |
+
return joints
|
148 |
+
|
149 |
+
def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
|
150 |
+
# cont6d_params (batch_size, joints_num, 6)
|
151 |
+
# joints (batch_size, joints_num, 3)
|
152 |
+
# root_pos (batch_size, 3)
|
153 |
+
if skel_joints is not None:
|
154 |
+
skel_joints = torch.from_numpy(skel_joints)
|
155 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
156 |
+
if len(self._offset.shape) == 2:
|
157 |
+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
|
158 |
+
offsets = offsets.numpy()
|
159 |
+
joints = np.zeros(cont6d_params.shape[:-1] + (3,))
|
160 |
+
joints[:, 0] = root_pos
|
161 |
+
for chain in self._kinematic_tree:
|
162 |
+
if do_root_R:
|
163 |
+
matR = cont6d_to_matrix_np(cont6d_params[:, 0])
|
164 |
+
else:
|
165 |
+
matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
|
166 |
+
for i in range(1, len(chain)):
|
167 |
+
matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
|
168 |
+
offset_vec = offsets[:, chain[i]][..., np.newaxis]
|
169 |
+
# print(matR.shape, offset_vec.shape)
|
170 |
+
joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
|
171 |
+
return joints
|
172 |
+
|
173 |
+
def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
|
174 |
+
# cont6d_params (batch_size, joints_num, 6)
|
175 |
+
# joints (batch_size, joints_num, 3)
|
176 |
+
# root_pos (batch_size, 3)
|
177 |
+
if skel_joints is not None:
|
178 |
+
# skel_joints = torch.from_numpy(skel_joints)
|
179 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
180 |
+
if len(self._offset.shape) == 2:
|
181 |
+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
|
182 |
+
joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
|
183 |
+
joints[..., 0, :] = root_pos
|
184 |
+
for chain in self._kinematic_tree:
|
185 |
+
if do_root_R:
|
186 |
+
matR = cont6d_to_matrix(cont6d_params[:, 0])
|
187 |
+
else:
|
188 |
+
matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
|
189 |
+
for i in range(1, len(chain)):
|
190 |
+
matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
|
191 |
+
offset_vec = offsets[:, chain[i]].unsqueeze(-1)
|
192 |
+
# print(matR.shape, offset_vec.shape)
|
193 |
+
joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
|
194 |
+
return joints
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
VQ-Trans/utils/utils_model.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.optim as optim
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
|
8 |
+
def getCi(accLog):
|
9 |
+
|
10 |
+
mean = np.mean(accLog)
|
11 |
+
std = np.std(accLog)
|
12 |
+
ci95 = 1.96*std/np.sqrt(len(accLog))
|
13 |
+
|
14 |
+
return mean, ci95
|
15 |
+
|
16 |
+
def get_logger(out_dir):
|
17 |
+
logger = logging.getLogger('Exp')
|
18 |
+
logger.setLevel(logging.INFO)
|
19 |
+
formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")
|
20 |
+
|
21 |
+
file_path = os.path.join(out_dir, "run.log")
|
22 |
+
file_hdlr = logging.FileHandler(file_path)
|
23 |
+
file_hdlr.setFormatter(formatter)
|
24 |
+
|
25 |
+
strm_hdlr = logging.StreamHandler(sys.stdout)
|
26 |
+
strm_hdlr.setFormatter(formatter)
|
27 |
+
|
28 |
+
logger.addHandler(file_hdlr)
|
29 |
+
logger.addHandler(strm_hdlr)
|
30 |
+
return logger
|
31 |
+
|
32 |
+
## Optimizer
|
33 |
+
def initial_optim(decay_option, lr, weight_decay, net, optimizer) :
|
34 |
+
|
35 |
+
if optimizer == 'adamw' :
|
36 |
+
optimizer_adam_family = optim.AdamW
|
37 |
+
elif optimizer == 'adam' :
|
38 |
+
optimizer_adam_family = optim.Adam
|
39 |
+
if decay_option == 'all':
|
40 |
+
#optimizer = optimizer_adam_family(net.parameters(), lr=lr, betas=(0.9, 0.999), weight_decay=weight_decay)
|
41 |
+
optimizer = optimizer_adam_family(net.parameters(), lr=lr, betas=(0.5, 0.9), weight_decay=weight_decay)
|
42 |
+
|
43 |
+
elif decay_option == 'noVQ':
|
44 |
+
all_params = set(net.parameters())
|
45 |
+
no_decay = set([net.vq_layer])
|
46 |
+
|
47 |
+
decay = all_params - no_decay
|
48 |
+
optimizer = optimizer_adam_family([
|
49 |
+
{'params': list(no_decay), 'weight_decay': 0},
|
50 |
+
{'params': list(decay), 'weight_decay' : weight_decay}], lr=lr)
|
51 |
+
|
52 |
+
return optimizer
|
53 |
+
|
54 |
+
|
55 |
+
def get_motion_with_trans(motion, velocity) :
|
56 |
+
'''
|
57 |
+
motion : torch.tensor, shape (batch_size, T, 72), with the global translation = 0
|
58 |
+
velocity : torch.tensor, shape (batch_size, T, 3), contain the information of velocity = 0
|
59 |
+
|
60 |
+
'''
|
61 |
+
trans = torch.cumsum(velocity, dim=1)
|
62 |
+
trans = trans - trans[:, :1] ## the first root is initialized at 0 (just for visualization)
|
63 |
+
trans = trans.repeat((1, 1, 21))
|
64 |
+
motion_with_trans = motion + trans
|
65 |
+
return motion_with_trans
|
66 |
+
|
VQ-Trans/utils/word_vectorizer.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
from os.path import join as pjoin
|
4 |
+
|
5 |
+
POS_enumerator = {
|
6 |
+
'VERB': 0,
|
7 |
+
'NOUN': 1,
|
8 |
+
'DET': 2,
|
9 |
+
'ADP': 3,
|
10 |
+
'NUM': 4,
|
11 |
+
'AUX': 5,
|
12 |
+
'PRON': 6,
|
13 |
+
'ADJ': 7,
|
14 |
+
'ADV': 8,
|
15 |
+
'Loc_VIP': 9,
|
16 |
+
'Body_VIP': 10,
|
17 |
+
'Obj_VIP': 11,
|
18 |
+
'Act_VIP': 12,
|
19 |
+
'Desc_VIP': 13,
|
20 |
+
'OTHER': 14,
|
21 |
+
}
|
22 |
+
|
23 |
+
Loc_list = ('left', 'right', 'clockwise', 'counterclockwise', 'anticlockwise', 'forward', 'back', 'backward',
|
24 |
+
'up', 'down', 'straight', 'curve')
|
25 |
+
|
26 |
+
Body_list = ('arm', 'chin', 'foot', 'feet', 'face', 'hand', 'mouth', 'leg', 'waist', 'eye', 'knee', 'shoulder', 'thigh')
|
27 |
+
|
28 |
+
Obj_List = ('stair', 'dumbbell', 'chair', 'window', 'floor', 'car', 'ball', 'handrail', 'baseball', 'basketball')
|
29 |
+
|
30 |
+
Act_list = ('walk', 'run', 'swing', 'pick', 'bring', 'kick', 'put', 'squat', 'throw', 'hop', 'dance', 'jump', 'turn',
|
31 |
+
'stumble', 'dance', 'stop', 'sit', 'lift', 'lower', 'raise', 'wash', 'stand', 'kneel', 'stroll',
|
32 |
+
'rub', 'bend', 'balance', 'flap', 'jog', 'shuffle', 'lean', 'rotate', 'spin', 'spread', 'climb')
|
33 |
+
|
34 |
+
Desc_list = ('slowly', 'carefully', 'fast', 'careful', 'slow', 'quickly', 'happy', 'angry', 'sad', 'happily',
|
35 |
+
'angrily', 'sadly')
|
36 |
+
|
37 |
+
VIP_dict = {
|
38 |
+
'Loc_VIP': Loc_list,
|
39 |
+
'Body_VIP': Body_list,
|
40 |
+
'Obj_VIP': Obj_List,
|
41 |
+
'Act_VIP': Act_list,
|
42 |
+
'Desc_VIP': Desc_list,
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
class WordVectorizer(object):
|
47 |
+
def __init__(self, meta_root, prefix):
|
48 |
+
vectors = np.load(pjoin(meta_root, '%s_data.npy'%prefix))
|
49 |
+
words = pickle.load(open(pjoin(meta_root, '%s_words.pkl'%prefix), 'rb'))
|
50 |
+
self.word2idx = pickle.load(open(pjoin(meta_root, '%s_idx.pkl'%prefix), 'rb'))
|
51 |
+
self.word2vec = {w: vectors[self.word2idx[w]] for w in words}
|
52 |
+
|
53 |
+
def _get_pos_ohot(self, pos):
|
54 |
+
pos_vec = np.zeros(len(POS_enumerator))
|
55 |
+
if pos in POS_enumerator:
|
56 |
+
pos_vec[POS_enumerator[pos]] = 1
|
57 |
+
else:
|
58 |
+
pos_vec[POS_enumerator['OTHER']] = 1
|
59 |
+
return pos_vec
|
60 |
+
|
61 |
+
def __len__(self):
|
62 |
+
return len(self.word2vec)
|
63 |
+
|
64 |
+
def __getitem__(self, item):
|
65 |
+
word, pos = item.split('/')
|
66 |
+
if word in self.word2vec:
|
67 |
+
word_vec = self.word2vec[word]
|
68 |
+
vip_pos = None
|
69 |
+
for key, values in VIP_dict.items():
|
70 |
+
if word in values:
|
71 |
+
vip_pos = key
|
72 |
+
break
|
73 |
+
if vip_pos is not None:
|
74 |
+
pos_vec = self._get_pos_ohot(vip_pos)
|
75 |
+
else:
|
76 |
+
pos_vec = self._get_pos_ohot(pos)
|
77 |
+
else:
|
78 |
+
word_vec = self.word2vec['unk']
|
79 |
+
pos_vec = self._get_pos_ohot('OTHER')
|
80 |
+
return word_vec, pos_vec
|
81 |
+
|
82 |
+
|
83 |
+
class WordVectorizerV2(WordVectorizer):
|
84 |
+
def __init__(self, meta_root, prefix):
|
85 |
+
super(WordVectorizerV2, self).__init__(meta_root, prefix)
|
86 |
+
self.idx2word = {self.word2idx[w]: w for w in self.word2idx}
|
87 |
+
|
88 |
+
def __getitem__(self, item):
|
89 |
+
word_vec, pose_vec = super(WordVectorizerV2, self).__getitem__(item)
|
90 |
+
word, pos = item.split('/')
|
91 |
+
if word in self.word2vec:
|
92 |
+
return word_vec, pose_vec, self.word2idx[word]
|
93 |
+
else:
|
94 |
+
return word_vec, pose_vec, self.word2idx['unk']
|
95 |
+
|
96 |
+
def itos(self, idx):
|
97 |
+
if idx == len(self.idx2word):
|
98 |
+
return "pad"
|
99 |
+
return self.idx2word[idx]
|
VQ-Trans/visualization/plot_3d_global.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
import matplotlib
|
6 |
+
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
7 |
+
import mpl_toolkits.mplot3d.axes3d as p3
|
8 |
+
from textwrap import wrap
|
9 |
+
import imageio
|
10 |
+
|
11 |
+
def plot_3d_motion(args, figsize=(10, 10), fps=120, radius=4):
|
12 |
+
matplotlib.use('Agg')
|
13 |
+
|
14 |
+
|
15 |
+
joints, out_name, title = args
|
16 |
+
|
17 |
+
data = joints.copy().reshape(len(joints), -1, 3)
|
18 |
+
|
19 |
+
nb_joints = joints.shape[1]
|
20 |
+
smpl_kinetic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]] if nb_joints == 21 else [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
|
21 |
+
limits = 1000 if nb_joints == 21 else 2
|
22 |
+
MINS = data.min(axis=0).min(axis=0)
|
23 |
+
MAXS = data.max(axis=0).max(axis=0)
|
24 |
+
colors = ['red', 'blue', 'black', 'red', 'blue',
|
25 |
+
'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
|
26 |
+
'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
|
27 |
+
frame_number = data.shape[0]
|
28 |
+
# print(data.shape)
|
29 |
+
|
30 |
+
height_offset = MINS[1]
|
31 |
+
data[:, :, 1] -= height_offset
|
32 |
+
trajec = data[:, 0, [0, 2]]
|
33 |
+
|
34 |
+
data[..., 0] -= data[:, 0:1, 0]
|
35 |
+
data[..., 2] -= data[:, 0:1, 2]
|
36 |
+
|
37 |
+
def update(index):
|
38 |
+
|
39 |
+
def init():
|
40 |
+
ax.set_xlim(-limits, limits)
|
41 |
+
ax.set_ylim(-limits, limits)
|
42 |
+
ax.set_zlim(0, limits)
|
43 |
+
ax.grid(b=False)
|
44 |
+
def plot_xzPlane(minx, maxx, miny, minz, maxz):
|
45 |
+
## Plot a plane XZ
|
46 |
+
verts = [
|
47 |
+
[minx, miny, minz],
|
48 |
+
[minx, miny, maxz],
|
49 |
+
[maxx, miny, maxz],
|
50 |
+
[maxx, miny, minz]
|
51 |
+
]
|
52 |
+
xz_plane = Poly3DCollection([verts])
|
53 |
+
xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
|
54 |
+
ax.add_collection3d(xz_plane)
|
55 |
+
fig = plt.figure(figsize=(480/96., 320/96.), dpi=96) if nb_joints == 21 else plt.figure(figsize=(10, 10), dpi=96)
|
56 |
+
if title is not None :
|
57 |
+
wraped_title = '\n'.join(wrap(title, 40))
|
58 |
+
fig.suptitle(wraped_title, fontsize=16)
|
59 |
+
ax = p3.Axes3D(fig)
|
60 |
+
|
61 |
+
init()
|
62 |
+
|
63 |
+
ax.lines = []
|
64 |
+
ax.collections = []
|
65 |
+
ax.view_init(elev=110, azim=-90)
|
66 |
+
ax.dist = 7.5
|
67 |
+
# ax =
|
68 |
+
plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
|
69 |
+
MAXS[2] - trajec[index, 1])
|
70 |
+
# ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3)
|
71 |
+
|
72 |
+
if index > 1:
|
73 |
+
ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
|
74 |
+
trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
|
75 |
+
color='blue')
|
76 |
+
# ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])
|
77 |
+
|
78 |
+
for i, (chain, color) in enumerate(zip(smpl_kinetic_chain, colors)):
|
79 |
+
# print(color)
|
80 |
+
if i < 5:
|
81 |
+
linewidth = 4.0
|
82 |
+
else:
|
83 |
+
linewidth = 2.0
|
84 |
+
ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,
|
85 |
+
color=color)
|
86 |
+
# print(trajec[:index, 0].shape)
|
87 |
+
|
88 |
+
plt.axis('off')
|
89 |
+
ax.set_xticklabels([])
|
90 |
+
ax.set_yticklabels([])
|
91 |
+
ax.set_zticklabels([])
|
92 |
+
|
93 |
+
if out_name is not None :
|
94 |
+
plt.savefig(out_name, dpi=96)
|
95 |
+
plt.close()
|
96 |
+
|
97 |
+
else :
|
98 |
+
io_buf = io.BytesIO()
|
99 |
+
fig.savefig(io_buf, format='raw', dpi=96)
|
100 |
+
io_buf.seek(0)
|
101 |
+
# print(fig.bbox.bounds)
|
102 |
+
arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8),
|
103 |
+
newshape=(int(fig.bbox.bounds[3]), int(fig.bbox.bounds[2]), -1))
|
104 |
+
io_buf.close()
|
105 |
+
plt.close()
|
106 |
+
return arr
|
107 |
+
|
108 |
+
out = []
|
109 |
+
for i in range(frame_number) :
|
110 |
+
out.append(update(i))
|
111 |
+
out = np.stack(out, axis=0)
|
112 |
+
return torch.from_numpy(out)
|
113 |
+
|
114 |
+
|
115 |
+
def draw_to_batch(smpl_joints_batch, title_batch=None, outname=None) :
|
116 |
+
|
117 |
+
batch_size = len(smpl_joints_batch)
|
118 |
+
out = []
|
119 |
+
for i in range(batch_size) :
|
120 |
+
out.append(plot_3d_motion([smpl_joints_batch[i], None, title_batch[i] if title_batch is not None else None]))
|
121 |
+
if outname is not None:
|
122 |
+
imageio.mimsave(outname[i], np.array(out[-1]), fps=20)
|
123 |
+
out = torch.stack(out, axis=0)
|
124 |
+
return out
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
VQ-Trans/visualize/joints2smpl/smpl_models/SMPL_downsample_index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b783c1677079397ee4bc26df5c72d73b8bb393bea41fa295b951187443daec
|
3 |
+
size 3556
|
VQ-Trans/visualize/joints2smpl/smpl_models/gmm_08.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1374908aae055a2afa01a2cd9a169bc6cfec1ceb7aa590e201a47b383060491
|
3 |
+
size 839127
|
VQ-Trans/visualize/joints2smpl/smpl_models/neutral_smpl_mean_params.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac9b474c74daec0253ed084720f662059336e976850f08a4a9a3f76d06613776
|
3 |
+
size 4848
|
VQ-Trans/visualize/joints2smpl/smpl_models/smplx_parts_segm.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb69c10801205c9cfb5353fdeb1b9cc5ade53d14c265c3339421cdde8b9c91e7
|
3 |
+
size 1323168
|
VQ-Trans/visualize/joints2smpl/src/config.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
# Map joints Name to SMPL joints idx
|
4 |
+
JOINT_MAP = {
|
5 |
+
'MidHip': 0,
|
6 |
+
'LHip': 1, 'LKnee': 4, 'LAnkle': 7, 'LFoot': 10,
|
7 |
+
'RHip': 2, 'RKnee': 5, 'RAnkle': 8, 'RFoot': 11,
|
8 |
+
'LShoulder': 16, 'LElbow': 18, 'LWrist': 20, 'LHand': 22,
|
9 |
+
'RShoulder': 17, 'RElbow': 19, 'RWrist': 21, 'RHand': 23,
|
10 |
+
'spine1': 3, 'spine2': 6, 'spine3': 9, 'Neck': 12, 'Head': 15,
|
11 |
+
'LCollar':13, 'Rcollar' :14,
|
12 |
+
'Nose':24, 'REye':26, 'LEye':26, 'REar':27, 'LEar':28,
|
13 |
+
'LHeel': 31, 'RHeel': 34,
|
14 |
+
'OP RShoulder': 17, 'OP LShoulder': 16,
|
15 |
+
'OP RHip': 2, 'OP LHip': 1,
|
16 |
+
'OP Neck': 12,
|
17 |
+
}
|
18 |
+
|
19 |
+
full_smpl_idx = range(24)
|
20 |
+
key_smpl_idx = [0, 1, 4, 7, 2, 5, 8, 17, 19, 21, 16, 18, 20]
|
21 |
+
|
22 |
+
|
23 |
+
AMASS_JOINT_MAP = {
|
24 |
+
'MidHip': 0,
|
25 |
+
'LHip': 1, 'LKnee': 4, 'LAnkle': 7, 'LFoot': 10,
|
26 |
+
'RHip': 2, 'RKnee': 5, 'RAnkle': 8, 'RFoot': 11,
|
27 |
+
'LShoulder': 16, 'LElbow': 18, 'LWrist': 20,
|
28 |
+
'RShoulder': 17, 'RElbow': 19, 'RWrist': 21,
|
29 |
+
'spine1': 3, 'spine2': 6, 'spine3': 9, 'Neck': 12, 'Head': 15,
|
30 |
+
'LCollar':13, 'Rcollar' :14,
|
31 |
+
}
|
32 |
+
amass_idx = range(22)
|
33 |
+
amass_smpl_idx = range(22)
|
34 |
+
|
35 |
+
|
36 |
+
SMPL_MODEL_DIR = "./body_models/"
|
37 |
+
GMM_MODEL_DIR = "./visualize/joints2smpl/smpl_models/"
|
38 |
+
SMPL_MEAN_FILE = "./visualize/joints2smpl/smpl_models/neutral_smpl_mean_params.h5"
|
39 |
+
# for collsion
|
40 |
+
Part_Seg_DIR = "./visualize/joints2smpl/smpl_models/smplx_parts_segm.pkl"
|
VQ-Trans/visualize/joints2smpl/src/customloss.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from visualize.joints2smpl.src import config
|
4 |
+
|
5 |
+
# Guassian
|
6 |
+
def gmof(x, sigma):
|
7 |
+
"""
|
8 |
+
Geman-McClure error function
|
9 |
+
"""
|
10 |
+
x_squared = x ** 2
|
11 |
+
sigma_squared = sigma ** 2
|
12 |
+
return (sigma_squared * x_squared) / (sigma_squared + x_squared)
|
13 |
+
|
14 |
+
# angle prior
|
15 |
+
def angle_prior(pose):
|
16 |
+
"""
|
17 |
+
Angle prior that penalizes unnatural bending of the knees and elbows
|
18 |
+
"""
|
19 |
+
# We subtract 3 because pose does not include the global rotation of the model
|
20 |
+
return torch.exp(
|
21 |
+
pose[:, [55 - 3, 58 - 3, 12 - 3, 15 - 3]] * torch.tensor([1., -1., -1, -1.], device=pose.device)) ** 2
|
22 |
+
|
23 |
+
|
24 |
+
def perspective_projection(points, rotation, translation,
|
25 |
+
focal_length, camera_center):
|
26 |
+
"""
|
27 |
+
This function computes the perspective projection of a set of points.
|
28 |
+
Input:
|
29 |
+
points (bs, N, 3): 3D points
|
30 |
+
rotation (bs, 3, 3): Camera rotation
|
31 |
+
translation (bs, 3): Camera translation
|
32 |
+
focal_length (bs,) or scalar: Focal length
|
33 |
+
camera_center (bs, 2): Camera center
|
34 |
+
"""
|
35 |
+
batch_size = points.shape[0]
|
36 |
+
K = torch.zeros([batch_size, 3, 3], device=points.device)
|
37 |
+
K[:, 0, 0] = focal_length
|
38 |
+
K[:, 1, 1] = focal_length
|
39 |
+
K[:, 2, 2] = 1.
|
40 |
+
K[:, :-1, -1] = camera_center
|
41 |
+
|
42 |
+
# Transform points
|
43 |
+
points = torch.einsum('bij,bkj->bki', rotation, points)
|
44 |
+
points = points + translation.unsqueeze(1)
|
45 |
+
|
46 |
+
# Apply perspective distortion
|
47 |
+
projected_points = points / points[:, :, -1].unsqueeze(-1)
|
48 |
+
|
49 |
+
# Apply camera intrinsics
|
50 |
+
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
|
51 |
+
|
52 |
+
return projected_points[:, :, :-1]
|
53 |
+
|
54 |
+
|
55 |
+
def body_fitting_loss(body_pose, betas, model_joints, camera_t, camera_center,
|
56 |
+
joints_2d, joints_conf, pose_prior,
|
57 |
+
focal_length=5000, sigma=100, pose_prior_weight=4.78,
|
58 |
+
shape_prior_weight=5, angle_prior_weight=15.2,
|
59 |
+
output='sum'):
|
60 |
+
"""
|
61 |
+
Loss function for body fitting
|
62 |
+
"""
|
63 |
+
batch_size = body_pose.shape[0]
|
64 |
+
rotation = torch.eye(3, device=body_pose.device).unsqueeze(0).expand(batch_size, -1, -1)
|
65 |
+
|
66 |
+
projected_joints = perspective_projection(model_joints, rotation, camera_t,
|
67 |
+
focal_length, camera_center)
|
68 |
+
|
69 |
+
# Weighted robust reprojection error
|
70 |
+
reprojection_error = gmof(projected_joints - joints_2d, sigma)
|
71 |
+
reprojection_loss = (joints_conf ** 2) * reprojection_error.sum(dim=-1)
|
72 |
+
|
73 |
+
# Pose prior loss
|
74 |
+
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)
|
75 |
+
|
76 |
+
# Angle prior for knees and elbows
|
77 |
+
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)
|
78 |
+
|
79 |
+
# Regularizer to prevent betas from taking large values
|
80 |
+
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)
|
81 |
+
|
82 |
+
total_loss = reprojection_loss.sum(dim=-1) + pose_prior_loss + angle_prior_loss + shape_prior_loss
|
83 |
+
|
84 |
+
if output == 'sum':
|
85 |
+
return total_loss.sum()
|
86 |
+
elif output == 'reprojection':
|
87 |
+
return reprojection_loss
|
88 |
+
|
89 |
+
|
90 |
+
# --- get camera fitting loss -----
|
91 |
+
def camera_fitting_loss(model_joints, camera_t, camera_t_est, camera_center,
|
92 |
+
joints_2d, joints_conf,
|
93 |
+
focal_length=5000, depth_loss_weight=100):
|
94 |
+
"""
|
95 |
+
Loss function for camera optimization.
|
96 |
+
"""
|
97 |
+
# Project model joints
|
98 |
+
batch_size = model_joints.shape[0]
|
99 |
+
rotation = torch.eye(3, device=model_joints.device).unsqueeze(0).expand(batch_size, -1, -1)
|
100 |
+
projected_joints = perspective_projection(model_joints, rotation, camera_t,
|
101 |
+
focal_length, camera_center)
|
102 |
+
|
103 |
+
# get the indexed four
|
104 |
+
op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder']
|
105 |
+
op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints]
|
106 |
+
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
|
107 |
+
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
|
108 |
+
|
109 |
+
reprojection_error_op = (joints_2d[:, op_joints_ind] -
|
110 |
+
projected_joints[:, op_joints_ind]) ** 2
|
111 |
+
reprojection_error_gt = (joints_2d[:, gt_joints_ind] -
|
112 |
+
projected_joints[:, gt_joints_ind]) ** 2
|
113 |
+
|
114 |
+
# Check if for each example in the batch all 4 OpenPose detections are valid, otherwise use the GT detections
|
115 |
+
# OpenPose joints are more reliable for this task, so we prefer to use them if possible
|
116 |
+
is_valid = (joints_conf[:, op_joints_ind].min(dim=-1)[0][:, None, None] > 0).float()
|
117 |
+
reprojection_loss = (is_valid * reprojection_error_op + (1 - is_valid) * reprojection_error_gt).sum(dim=(1, 2))
|
118 |
+
|
119 |
+
# Loss that penalizes deviation from depth estimate
|
120 |
+
depth_loss = (depth_loss_weight ** 2) * (camera_t[:, 2] - camera_t_est[:, 2]) ** 2
|
121 |
+
|
122 |
+
total_loss = reprojection_loss + depth_loss
|
123 |
+
return total_loss.sum()
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
# #####--- body fitiing loss -----
|
128 |
+
def body_fitting_loss_3d(body_pose, preserve_pose,
|
129 |
+
betas, model_joints, camera_translation,
|
130 |
+
j3d, pose_prior,
|
131 |
+
joints3d_conf,
|
132 |
+
sigma=100, pose_prior_weight=4.78*1.5,
|
133 |
+
shape_prior_weight=5.0, angle_prior_weight=15.2,
|
134 |
+
joint_loss_weight=500.0,
|
135 |
+
pose_preserve_weight=0.0,
|
136 |
+
use_collision=False,
|
137 |
+
model_vertices=None, model_faces=None,
|
138 |
+
search_tree=None, pen_distance=None, filter_faces=None,
|
139 |
+
collision_loss_weight=1000
|
140 |
+
):
|
141 |
+
"""
|
142 |
+
Loss function for body fitting
|
143 |
+
"""
|
144 |
+
batch_size = body_pose.shape[0]
|
145 |
+
|
146 |
+
#joint3d_loss = (joint_loss_weight ** 2) * gmof((model_joints + camera_translation) - j3d, sigma).sum(dim=-1)
|
147 |
+
|
148 |
+
joint3d_error = gmof((model_joints + camera_translation) - j3d, sigma)
|
149 |
+
|
150 |
+
joint3d_loss_part = (joints3d_conf ** 2) * joint3d_error.sum(dim=-1)
|
151 |
+
joint3d_loss = ((joint_loss_weight ** 2) * joint3d_loss_part).sum(dim=-1)
|
152 |
+
|
153 |
+
# Pose prior loss
|
154 |
+
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)
|
155 |
+
# Angle prior for knees and elbows
|
156 |
+
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)
|
157 |
+
# Regularizer to prevent betas from taking large values
|
158 |
+
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)
|
159 |
+
|
160 |
+
collision_loss = 0.0
|
161 |
+
# Calculate the loss due to interpenetration
|
162 |
+
if use_collision:
|
163 |
+
triangles = torch.index_select(
|
164 |
+
model_vertices, 1,
|
165 |
+
model_faces).view(batch_size, -1, 3, 3)
|
166 |
+
|
167 |
+
with torch.no_grad():
|
168 |
+
collision_idxs = search_tree(triangles)
|
169 |
+
|
170 |
+
# Remove unwanted collisions
|
171 |
+
if filter_faces is not None:
|
172 |
+
collision_idxs = filter_faces(collision_idxs)
|
173 |
+
|
174 |
+
if collision_idxs.ge(0).sum().item() > 0:
|
175 |
+
collision_loss = torch.sum(collision_loss_weight * pen_distance(triangles, collision_idxs))
|
176 |
+
|
177 |
+
pose_preserve_loss = (pose_preserve_weight ** 2) * ((body_pose - preserve_pose) ** 2).sum(dim=-1)
|
178 |
+
|
179 |
+
# print('joint3d_loss', joint3d_loss.shape)
|
180 |
+
# print('pose_prior_loss', pose_prior_loss.shape)
|
181 |
+
# print('angle_prior_loss', angle_prior_loss.shape)
|
182 |
+
# print('shape_prior_loss', shape_prior_loss.shape)
|
183 |
+
# print('collision_loss', collision_loss)
|
184 |
+
# print('pose_preserve_loss', pose_preserve_loss.shape)
|
185 |
+
|
186 |
+
total_loss = joint3d_loss + pose_prior_loss + angle_prior_loss + shape_prior_loss + collision_loss + pose_preserve_loss
|
187 |
+
|
188 |
+
return total_loss.sum()
|
189 |
+
|
190 |
+
|
191 |
+
# #####--- get camera fitting loss -----
|
192 |
+
def camera_fitting_loss_3d(model_joints, camera_t, camera_t_est,
|
193 |
+
j3d, joints_category="orig", depth_loss_weight=100.0):
|
194 |
+
"""
|
195 |
+
Loss function for camera optimization.
|
196 |
+
"""
|
197 |
+
model_joints = model_joints + camera_t
|
198 |
+
# # get the indexed four
|
199 |
+
# op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder']
|
200 |
+
# op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints]
|
201 |
+
#
|
202 |
+
# j3d_error_loss = (j3d[:, op_joints_ind] -
|
203 |
+
# model_joints[:, op_joints_ind]) ** 2
|
204 |
+
|
205 |
+
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
|
206 |
+
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
|
207 |
+
|
208 |
+
if joints_category=="orig":
|
209 |
+
select_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
|
210 |
+
elif joints_category=="AMASS":
|
211 |
+
select_joints_ind = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints]
|
212 |
+
else:
|
213 |
+
print("NO SUCH JOINTS CATEGORY!")
|
214 |
+
|
215 |
+
j3d_error_loss = (j3d[:, select_joints_ind] -
|
216 |
+
model_joints[:, gt_joints_ind]) ** 2
|
217 |
+
|
218 |
+
# Loss that penalizes deviation from depth estimate
|
219 |
+
depth_loss = (depth_loss_weight**2) * (camera_t - camera_t_est)**2
|
220 |
+
|
221 |
+
total_loss = j3d_error_loss + depth_loss
|
222 |
+
return total_loss.sum()
|
VQ-Trans/visualize/joints2smpl/src/prior.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
|
4 |
+
# holder of all proprietary rights on this computer program.
|
5 |
+
# You can only use this computer program if you have closed
|
6 |
+
# a license agreement with MPG or you get the right to use the computer
|
7 |
+
# program from someone who is authorized to grant you that right.
|
8 |
+
# Any use of the computer program without a valid license is prohibited and
|
9 |
+
# liable to prosecution.
|
10 |
+
#
|
11 |
+
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
|
12 |
+
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
|
13 |
+
# for Intelligent Systems. All rights reserved.
|
14 |
+
#
|
15 |
+
# Contact: [email protected]
|
16 |
+
|
17 |
+
from __future__ import absolute_import
|
18 |
+
from __future__ import print_function
|
19 |
+
from __future__ import division
|
20 |
+
|
21 |
+
import sys
|
22 |
+
import os
|
23 |
+
|
24 |
+
import time
|
25 |
+
import pickle
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
import torch
|
30 |
+
import torch.nn as nn
|
31 |
+
|
32 |
+
DEFAULT_DTYPE = torch.float32
|
33 |
+
|
34 |
+
|
35 |
+
def create_prior(prior_type, **kwargs):
|
36 |
+
if prior_type == 'gmm':
|
37 |
+
prior = MaxMixturePrior(**kwargs)
|
38 |
+
elif prior_type == 'l2':
|
39 |
+
return L2Prior(**kwargs)
|
40 |
+
elif prior_type == 'angle':
|
41 |
+
return SMPLifyAnglePrior(**kwargs)
|
42 |
+
elif prior_type == 'none' or prior_type is None:
|
43 |
+
# Don't use any pose prior
|
44 |
+
def no_prior(*args, **kwargs):
|
45 |
+
return 0.0
|
46 |
+
prior = no_prior
|
47 |
+
else:
|
48 |
+
raise ValueError('Prior {}'.format(prior_type) + ' is not implemented')
|
49 |
+
return prior
|
50 |
+
|
51 |
+
|
52 |
+
class SMPLifyAnglePrior(nn.Module):
|
53 |
+
def __init__(self, dtype=torch.float32, **kwargs):
|
54 |
+
super(SMPLifyAnglePrior, self).__init__()
|
55 |
+
|
56 |
+
# Indices for the roration angle of
|
57 |
+
# 55: left elbow, 90deg bend at -np.pi/2
|
58 |
+
# 58: right elbow, 90deg bend at np.pi/2
|
59 |
+
# 12: left knee, 90deg bend at np.pi/2
|
60 |
+
# 15: right knee, 90deg bend at np.pi/2
|
61 |
+
angle_prior_idxs = np.array([55, 58, 12, 15], dtype=np.int64)
|
62 |
+
angle_prior_idxs = torch.tensor(angle_prior_idxs, dtype=torch.long)
|
63 |
+
self.register_buffer('angle_prior_idxs', angle_prior_idxs)
|
64 |
+
|
65 |
+
angle_prior_signs = np.array([1, -1, -1, -1],
|
66 |
+
dtype=np.float32 if dtype == torch.float32
|
67 |
+
else np.float64)
|
68 |
+
angle_prior_signs = torch.tensor(angle_prior_signs,
|
69 |
+
dtype=dtype)
|
70 |
+
self.register_buffer('angle_prior_signs', angle_prior_signs)
|
71 |
+
|
72 |
+
def forward(self, pose, with_global_pose=False):
|
73 |
+
''' Returns the angle prior loss for the given pose
|
74 |
+
|
75 |
+
Args:
|
76 |
+
pose: (Bx[23 + 1] * 3) torch tensor with the axis-angle
|
77 |
+
representation of the rotations of the joints of the SMPL model.
|
78 |
+
Kwargs:
|
79 |
+
with_global_pose: Whether the pose vector also contains the global
|
80 |
+
orientation of the SMPL model. If not then the indices must be
|
81 |
+
corrected.
|
82 |
+
Returns:
|
83 |
+
A sze (B) tensor containing the angle prior loss for each element
|
84 |
+
in the batch.
|
85 |
+
'''
|
86 |
+
angle_prior_idxs = self.angle_prior_idxs - (not with_global_pose) * 3
|
87 |
+
return torch.exp(pose[:, angle_prior_idxs] *
|
88 |
+
self.angle_prior_signs).pow(2)
|
89 |
+
|
90 |
+
|
91 |
+
class L2Prior(nn.Module):
|
92 |
+
def __init__(self, dtype=DEFAULT_DTYPE, reduction='sum', **kwargs):
|
93 |
+
super(L2Prior, self).__init__()
|
94 |
+
|
95 |
+
def forward(self, module_input, *args):
|
96 |
+
return torch.sum(module_input.pow(2))
|
97 |
+
|
98 |
+
|
99 |
+
class MaxMixturePrior(nn.Module):
|
100 |
+
|
101 |
+
def __init__(self, prior_folder='prior',
|
102 |
+
num_gaussians=6, dtype=DEFAULT_DTYPE, epsilon=1e-16,
|
103 |
+
use_merged=True,
|
104 |
+
**kwargs):
|
105 |
+
super(MaxMixturePrior, self).__init__()
|
106 |
+
|
107 |
+
if dtype == DEFAULT_DTYPE:
|
108 |
+
np_dtype = np.float32
|
109 |
+
elif dtype == torch.float64:
|
110 |
+
np_dtype = np.float64
|
111 |
+
else:
|
112 |
+
print('Unknown float type {}, exiting!'.format(dtype))
|
113 |
+
sys.exit(-1)
|
114 |
+
|
115 |
+
self.num_gaussians = num_gaussians
|
116 |
+
self.epsilon = epsilon
|
117 |
+
self.use_merged = use_merged
|
118 |
+
gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians)
|
119 |
+
|
120 |
+
full_gmm_fn = os.path.join(prior_folder, gmm_fn)
|
121 |
+
if not os.path.exists(full_gmm_fn):
|
122 |
+
print('The path to the mixture prior "{}"'.format(full_gmm_fn) +
|
123 |
+
' does not exist, exiting!')
|
124 |
+
sys.exit(-1)
|
125 |
+
|
126 |
+
with open(full_gmm_fn, 'rb') as f:
|
127 |
+
gmm = pickle.load(f, encoding='latin1')
|
128 |
+
|
129 |
+
if type(gmm) == dict:
|
130 |
+
means = gmm['means'].astype(np_dtype)
|
131 |
+
covs = gmm['covars'].astype(np_dtype)
|
132 |
+
weights = gmm['weights'].astype(np_dtype)
|
133 |
+
elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)):
|
134 |
+
means = gmm.means_.astype(np_dtype)
|
135 |
+
covs = gmm.covars_.astype(np_dtype)
|
136 |
+
weights = gmm.weights_.astype(np_dtype)
|
137 |
+
else:
|
138 |
+
print('Unknown type for the prior: {}, exiting!'.format(type(gmm)))
|
139 |
+
sys.exit(-1)
|
140 |
+
|
141 |
+
self.register_buffer('means', torch.tensor(means, dtype=dtype))
|
142 |
+
|
143 |
+
self.register_buffer('covs', torch.tensor(covs, dtype=dtype))
|
144 |
+
|
145 |
+
precisions = [np.linalg.inv(cov) for cov in covs]
|
146 |
+
precisions = np.stack(precisions).astype(np_dtype)
|
147 |
+
|
148 |
+
self.register_buffer('precisions',
|
149 |
+
torch.tensor(precisions, dtype=dtype))
|
150 |
+
|
151 |
+
# The constant term:
|
152 |
+
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
|
153 |
+
for c in gmm['covars']])
|
154 |
+
const = (2 * np.pi)**(69 / 2.)
|
155 |
+
|
156 |
+
nll_weights = np.asarray(gmm['weights'] / (const *
|
157 |
+
(sqrdets / sqrdets.min())))
|
158 |
+
nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0)
|
159 |
+
self.register_buffer('nll_weights', nll_weights)
|
160 |
+
|
161 |
+
weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0)
|
162 |
+
self.register_buffer('weights', weights)
|
163 |
+
|
164 |
+
self.register_buffer('pi_term',
|
165 |
+
torch.log(torch.tensor(2 * np.pi, dtype=dtype)))
|
166 |
+
|
167 |
+
cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
|
168 |
+
for cov in covs]
|
169 |
+
self.register_buffer('cov_dets',
|
170 |
+
torch.tensor(cov_dets, dtype=dtype))
|
171 |
+
|
172 |
+
# The dimensionality of the random variable
|
173 |
+
self.random_var_dim = self.means.shape[1]
|
174 |
+
|
175 |
+
def get_mean(self):
|
176 |
+
''' Returns the mean of the mixture '''
|
177 |
+
mean_pose = torch.matmul(self.weights, self.means)
|
178 |
+
return mean_pose
|
179 |
+
|
180 |
+
def merged_log_likelihood(self, pose, betas):
|
181 |
+
diff_from_mean = pose.unsqueeze(dim=1) - self.means
|
182 |
+
|
183 |
+
prec_diff_prod = torch.einsum('mij,bmj->bmi',
|
184 |
+
[self.precisions, diff_from_mean])
|
185 |
+
diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)
|
186 |
+
|
187 |
+
curr_loglikelihood = 0.5 * diff_prec_quadratic - \
|
188 |
+
torch.log(self.nll_weights)
|
189 |
+
# curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) +
|
190 |
+
# self.random_var_dim * self.pi_term +
|
191 |
+
# diff_prec_quadratic
|
192 |
+
# ) - torch.log(self.weights)
|
193 |
+
|
194 |
+
min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
|
195 |
+
return min_likelihood
|
196 |
+
|
197 |
+
def log_likelihood(self, pose, betas, *args, **kwargs):
|
198 |
+
''' Create graph operation for negative log-likelihood calculation
|
199 |
+
'''
|
200 |
+
likelihoods = []
|
201 |
+
|
202 |
+
for idx in range(self.num_gaussians):
|
203 |
+
mean = self.means[idx]
|
204 |
+
prec = self.precisions[idx]
|
205 |
+
cov = self.covs[idx]
|
206 |
+
diff_from_mean = pose - mean
|
207 |
+
|
208 |
+
curr_loglikelihood = torch.einsum('bj,ji->bi',
|
209 |
+
[diff_from_mean, prec])
|
210 |
+
curr_loglikelihood = torch.einsum('bi,bi->b',
|
211 |
+
[curr_loglikelihood,
|
212 |
+
diff_from_mean])
|
213 |
+
cov_term = torch.log(torch.det(cov) + self.epsilon)
|
214 |
+
curr_loglikelihood += 0.5 * (cov_term +
|
215 |
+
self.random_var_dim *
|
216 |
+
self.pi_term)
|
217 |
+
likelihoods.append(curr_loglikelihood)
|
218 |
+
|
219 |
+
log_likelihoods = torch.stack(likelihoods, dim=1)
|
220 |
+
min_idx = torch.argmin(log_likelihoods, dim=1)
|
221 |
+
weight_component = self.nll_weights[:, min_idx]
|
222 |
+
weight_component = -torch.log(weight_component)
|
223 |
+
|
224 |
+
return weight_component + log_likelihoods[:, min_idx]
|
225 |
+
|
226 |
+
def forward(self, pose, betas):
|
227 |
+
if self.use_merged:
|
228 |
+
return self.merged_log_likelihood(pose, betas)
|
229 |
+
else:
|
230 |
+
return self.log_likelihood(pose, betas)
|
VQ-Trans/visualize/joints2smpl/src/smplify.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os, sys
|
3 |
+
import pickle
|
4 |
+
import smplx
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
sys.path.append(os.path.dirname(__file__))
|
8 |
+
from customloss import (camera_fitting_loss,
|
9 |
+
body_fitting_loss,
|
10 |
+
camera_fitting_loss_3d,
|
11 |
+
body_fitting_loss_3d,
|
12 |
+
)
|
13 |
+
from prior import MaxMixturePrior
|
14 |
+
from visualize.joints2smpl.src import config
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def guess_init_3d(model_joints,
|
20 |
+
j3d,
|
21 |
+
joints_category="orig"):
|
22 |
+
"""Initialize the camera translation via triangle similarity, by using the torso joints .
|
23 |
+
:param model_joints: SMPL model with pre joints
|
24 |
+
:param j3d: 25x3 array of Kinect Joints
|
25 |
+
:returns: 3D vector corresponding to the estimated camera translation
|
26 |
+
"""
|
27 |
+
# get the indexed four
|
28 |
+
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
|
29 |
+
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
|
30 |
+
|
31 |
+
if joints_category=="orig":
|
32 |
+
joints_ind_category = [config.JOINT_MAP[joint] for joint in gt_joints]
|
33 |
+
elif joints_category=="AMASS":
|
34 |
+
joints_ind_category = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints]
|
35 |
+
else:
|
36 |
+
print("NO SUCH JOINTS CATEGORY!")
|
37 |
+
|
38 |
+
sum_init_t = (j3d[:, joints_ind_category] - model_joints[:, gt_joints_ind]).sum(dim=1)
|
39 |
+
init_t = sum_init_t / 4.0
|
40 |
+
return init_t
|
41 |
+
|
42 |
+
|
43 |
+
# SMPLIfy 3D
|
44 |
+
class SMPLify3D():
|
45 |
+
"""Implementation of SMPLify, use 3D joints."""
|
46 |
+
|
47 |
+
def __init__(self,
|
48 |
+
smplxmodel,
|
49 |
+
step_size=1e-2,
|
50 |
+
batch_size=1,
|
51 |
+
num_iters=100,
|
52 |
+
use_collision=False,
|
53 |
+
use_lbfgs=True,
|
54 |
+
joints_category="orig",
|
55 |
+
device=torch.device('cuda:0'),
|
56 |
+
):
|
57 |
+
|
58 |
+
# Store options
|
59 |
+
self.batch_size = batch_size
|
60 |
+
self.device = device
|
61 |
+
self.step_size = step_size
|
62 |
+
|
63 |
+
self.num_iters = num_iters
|
64 |
+
# --- choose optimizer
|
65 |
+
self.use_lbfgs = use_lbfgs
|
66 |
+
# GMM pose prior
|
67 |
+
self.pose_prior = MaxMixturePrior(prior_folder=config.GMM_MODEL_DIR,
|
68 |
+
num_gaussians=8,
|
69 |
+
dtype=torch.float32).to(device)
|
70 |
+
# collision part
|
71 |
+
self.use_collision = use_collision
|
72 |
+
if self.use_collision:
|
73 |
+
self.part_segm_fn = config.Part_Seg_DIR
|
74 |
+
|
75 |
+
# reLoad SMPL-X model
|
76 |
+
self.smpl = smplxmodel
|
77 |
+
|
78 |
+
self.model_faces = smplxmodel.faces_tensor.view(-1)
|
79 |
+
|
80 |
+
# select joint joint_category
|
81 |
+
self.joints_category = joints_category
|
82 |
+
|
83 |
+
if joints_category=="orig":
|
84 |
+
self.smpl_index = config.full_smpl_idx
|
85 |
+
self.corr_index = config.full_smpl_idx
|
86 |
+
elif joints_category=="AMASS":
|
87 |
+
self.smpl_index = config.amass_smpl_idx
|
88 |
+
self.corr_index = config.amass_idx
|
89 |
+
else:
|
90 |
+
self.smpl_index = None
|
91 |
+
self.corr_index = None
|
92 |
+
print("NO SUCH JOINTS CATEGORY!")
|
93 |
+
|
94 |
+
# ---- get the man function here ------
|
95 |
+
def __call__(self, init_pose, init_betas, init_cam_t, j3d, conf_3d=1.0, seq_ind=0):
|
96 |
+
"""Perform body fitting.
|
97 |
+
Input:
|
98 |
+
init_pose: SMPL pose estimate
|
99 |
+
init_betas: SMPL betas estimate
|
100 |
+
init_cam_t: Camera translation estimate
|
101 |
+
j3d: joints 3d aka keypoints
|
102 |
+
conf_3d: confidence for 3d joints
|
103 |
+
seq_ind: index of the sequence
|
104 |
+
Returns:
|
105 |
+
vertices: Vertices of optimized shape
|
106 |
+
joints: 3D joints of optimized shape
|
107 |
+
pose: SMPL pose parameters of optimized shape
|
108 |
+
betas: SMPL beta parameters of optimized shape
|
109 |
+
camera_translation: Camera translation
|
110 |
+
"""
|
111 |
+
|
112 |
+
# # # add the mesh inter-section to avoid
|
113 |
+
search_tree = None
|
114 |
+
pen_distance = None
|
115 |
+
filter_faces = None
|
116 |
+
|
117 |
+
if self.use_collision:
|
118 |
+
from mesh_intersection.bvh_search_tree import BVH
|
119 |
+
import mesh_intersection.loss as collisions_loss
|
120 |
+
from mesh_intersection.filter_faces import FilterFaces
|
121 |
+
|
122 |
+
search_tree = BVH(max_collisions=8)
|
123 |
+
|
124 |
+
pen_distance = collisions_loss.DistanceFieldPenetrationLoss(
|
125 |
+
sigma=0.5, point2plane=False, vectorized=True, penalize_outside=True)
|
126 |
+
|
127 |
+
if self.part_segm_fn:
|
128 |
+
# Read the part segmentation
|
129 |
+
part_segm_fn = os.path.expandvars(self.part_segm_fn)
|
130 |
+
with open(part_segm_fn, 'rb') as faces_parents_file:
|
131 |
+
face_segm_data = pickle.load(faces_parents_file, encoding='latin1')
|
132 |
+
faces_segm = face_segm_data['segm']
|
133 |
+
faces_parents = face_segm_data['parents']
|
134 |
+
# Create the module used to filter invalid collision pairs
|
135 |
+
filter_faces = FilterFaces(
|
136 |
+
faces_segm=faces_segm, faces_parents=faces_parents,
|
137 |
+
ign_part_pairs=None).to(device=self.device)
|
138 |
+
|
139 |
+
|
140 |
+
# Split SMPL pose to body pose and global orientation
|
141 |
+
body_pose = init_pose[:, 3:].detach().clone()
|
142 |
+
global_orient = init_pose[:, :3].detach().clone()
|
143 |
+
betas = init_betas.detach().clone()
|
144 |
+
|
145 |
+
# use guess 3d to get the initial
|
146 |
+
smpl_output = self.smpl(global_orient=global_orient,
|
147 |
+
body_pose=body_pose,
|
148 |
+
betas=betas)
|
149 |
+
model_joints = smpl_output.joints
|
150 |
+
|
151 |
+
init_cam_t = guess_init_3d(model_joints, j3d, self.joints_category).unsqueeze(1).detach()
|
152 |
+
camera_translation = init_cam_t.clone()
|
153 |
+
|
154 |
+
preserve_pose = init_pose[:, 3:].detach().clone()
|
155 |
+
# -------------Step 1: Optimize camera translation and body orientation--------
|
156 |
+
# Optimize only camera translation and body orientation
|
157 |
+
body_pose.requires_grad = False
|
158 |
+
betas.requires_grad = False
|
159 |
+
global_orient.requires_grad = True
|
160 |
+
camera_translation.requires_grad = True
|
161 |
+
|
162 |
+
camera_opt_params = [global_orient, camera_translation]
|
163 |
+
|
164 |
+
if self.use_lbfgs:
|
165 |
+
camera_optimizer = torch.optim.LBFGS(camera_opt_params, max_iter=self.num_iters,
|
166 |
+
lr=self.step_size, line_search_fn='strong_wolfe')
|
167 |
+
for i in range(10):
|
168 |
+
def closure():
|
169 |
+
camera_optimizer.zero_grad()
|
170 |
+
smpl_output = self.smpl(global_orient=global_orient,
|
171 |
+
body_pose=body_pose,
|
172 |
+
betas=betas)
|
173 |
+
model_joints = smpl_output.joints
|
174 |
+
# print('model_joints', model_joints.shape)
|
175 |
+
# print('camera_translation', camera_translation.shape)
|
176 |
+
# print('init_cam_t', init_cam_t.shape)
|
177 |
+
# print('j3d', j3d.shape)
|
178 |
+
loss = camera_fitting_loss_3d(model_joints, camera_translation,
|
179 |
+
init_cam_t, j3d, self.joints_category)
|
180 |
+
loss.backward()
|
181 |
+
return loss
|
182 |
+
|
183 |
+
camera_optimizer.step(closure)
|
184 |
+
else:
|
185 |
+
camera_optimizer = torch.optim.Adam(camera_opt_params, lr=self.step_size, betas=(0.9, 0.999))
|
186 |
+
|
187 |
+
for i in range(20):
|
188 |
+
smpl_output = self.smpl(global_orient=global_orient,
|
189 |
+
body_pose=body_pose,
|
190 |
+
betas=betas)
|
191 |
+
model_joints = smpl_output.joints
|
192 |
+
|
193 |
+
loss = camera_fitting_loss_3d(model_joints[:, self.smpl_index], camera_translation,
|
194 |
+
init_cam_t, j3d[:, self.corr_index], self.joints_category)
|
195 |
+
camera_optimizer.zero_grad()
|
196 |
+
loss.backward()
|
197 |
+
camera_optimizer.step()
|
198 |
+
|
199 |
+
# Fix camera translation after optimizing camera
|
200 |
+
# --------Step 2: Optimize body joints --------------------------
|
201 |
+
# Optimize only the body pose and global orientation of the body
|
202 |
+
body_pose.requires_grad = True
|
203 |
+
global_orient.requires_grad = True
|
204 |
+
camera_translation.requires_grad = True
|
205 |
+
|
206 |
+
# --- if we use the sequence, fix the shape
|
207 |
+
if seq_ind == 0:
|
208 |
+
betas.requires_grad = True
|
209 |
+
body_opt_params = [body_pose, betas, global_orient, camera_translation]
|
210 |
+
else:
|
211 |
+
betas.requires_grad = False
|
212 |
+
body_opt_params = [body_pose, global_orient, camera_translation]
|
213 |
+
|
214 |
+
if self.use_lbfgs:
|
215 |
+
body_optimizer = torch.optim.LBFGS(body_opt_params, max_iter=self.num_iters,
|
216 |
+
lr=self.step_size, line_search_fn='strong_wolfe')
|
217 |
+
for i in range(self.num_iters):
|
218 |
+
def closure():
|
219 |
+
body_optimizer.zero_grad()
|
220 |
+
smpl_output = self.smpl(global_orient=global_orient,
|
221 |
+
body_pose=body_pose,
|
222 |
+
betas=betas)
|
223 |
+
model_joints = smpl_output.joints
|
224 |
+
model_vertices = smpl_output.vertices
|
225 |
+
|
226 |
+
loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
|
227 |
+
j3d[:, self.corr_index], self.pose_prior,
|
228 |
+
joints3d_conf=conf_3d,
|
229 |
+
joint_loss_weight=600.0,
|
230 |
+
pose_preserve_weight=5.0,
|
231 |
+
use_collision=self.use_collision,
|
232 |
+
model_vertices=model_vertices, model_faces=self.model_faces,
|
233 |
+
search_tree=search_tree, pen_distance=pen_distance, filter_faces=filter_faces)
|
234 |
+
loss.backward()
|
235 |
+
return loss
|
236 |
+
|
237 |
+
body_optimizer.step(closure)
|
238 |
+
else:
|
239 |
+
body_optimizer = torch.optim.Adam(body_opt_params, lr=self.step_size, betas=(0.9, 0.999))
|
240 |
+
|
241 |
+
for i in range(self.num_iters):
|
242 |
+
smpl_output = self.smpl(global_orient=global_orient,
|
243 |
+
body_pose=body_pose,
|
244 |
+
betas=betas)
|
245 |
+
model_joints = smpl_output.joints
|
246 |
+
model_vertices = smpl_output.vertices
|
247 |
+
|
248 |
+
loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
|
249 |
+
j3d[:, self.corr_index], self.pose_prior,
|
250 |
+
joints3d_conf=conf_3d,
|
251 |
+
joint_loss_weight=600.0,
|
252 |
+
use_collision=self.use_collision,
|
253 |
+
model_vertices=model_vertices, model_faces=self.model_faces,
|
254 |
+
search_tree=search_tree, pen_distance=pen_distance, filter_faces=filter_faces)
|
255 |
+
body_optimizer.zero_grad()
|
256 |
+
loss.backward()
|
257 |
+
body_optimizer.step()
|
258 |
+
|
259 |
+
# Get final loss value
|
260 |
+
with torch.no_grad():
|
261 |
+
smpl_output = self.smpl(global_orient=global_orient,
|
262 |
+
body_pose=body_pose,
|
263 |
+
betas=betas, return_full_pose=True)
|
264 |
+
model_joints = smpl_output.joints
|
265 |
+
model_vertices = smpl_output.vertices
|
266 |
+
|
267 |
+
final_loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
|
268 |
+
j3d[:, self.corr_index], self.pose_prior,
|
269 |
+
joints3d_conf=conf_3d,
|
270 |
+
joint_loss_weight=600.0,
|
271 |
+
use_collision=self.use_collision, model_vertices=model_vertices, model_faces=self.model_faces,
|
272 |
+
search_tree=search_tree, pen_distance=pen_distance, filter_faces=filter_faces)
|
273 |
+
|
274 |
+
vertices = smpl_output.vertices.detach()
|
275 |
+
joints = smpl_output.joints.detach()
|
276 |
+
pose = torch.cat([global_orient, body_pose], dim=-1).detach()
|
277 |
+
betas = betas.detach()
|
278 |
+
|
279 |
+
return vertices, joints, pose, betas, camera_translation, final_loss
|
VQ-Trans/visualize/render_mesh.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from visualize import vis_utils
|
4 |
+
import shutil
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
if __name__ == '__main__':
|
8 |
+
parser = argparse.ArgumentParser()
|
9 |
+
parser.add_argument("--input_path", type=str, required=True, help='stick figure mp4 file to be rendered.')
|
10 |
+
parser.add_argument("--cuda", type=bool, default=True, help='')
|
11 |
+
parser.add_argument("--device", type=int, default=0, help='')
|
12 |
+
params = parser.parse_args()
|
13 |
+
|
14 |
+
assert params.input_path.endswith('.mp4')
|
15 |
+
parsed_name = os.path.basename(params.input_path).replace('.mp4', '').replace('sample', '').replace('rep', '')
|
16 |
+
sample_i, rep_i = [int(e) for e in parsed_name.split('_')]
|
17 |
+
npy_path = os.path.join(os.path.dirname(params.input_path), 'results.npy')
|
18 |
+
out_npy_path = params.input_path.replace('.mp4', '_smpl_params.npy')
|
19 |
+
assert os.path.exists(npy_path)
|
20 |
+
results_dir = params.input_path.replace('.mp4', '_obj')
|
21 |
+
if os.path.exists(results_dir):
|
22 |
+
shutil.rmtree(results_dir)
|
23 |
+
os.makedirs(results_dir)
|
24 |
+
|
25 |
+
npy2obj = vis_utils.npy2obj(npy_path, sample_i, rep_i,
|
26 |
+
device=params.device, cuda=params.cuda)
|
27 |
+
|
28 |
+
print('Saving obj files to [{}]'.format(os.path.abspath(results_dir)))
|
29 |
+
for frame_i in tqdm(range(npy2obj.real_num_frames)):
|
30 |
+
npy2obj.save_obj(os.path.join(results_dir, 'frame{:03d}.obj'.format(frame_i)), frame_i)
|
31 |
+
|
32 |
+
print('Saving SMPL params to [{}]'.format(os.path.abspath(out_npy_path)))
|
33 |
+
npy2obj.save_npy(out_npy_path)
|