Spaces:
Running
Running
from typing import Any, List, Literal, Optional | |
from argparse import ArgumentParser | |
from time import sleep | |
import cv2 | |
import numpy | |
import onnxruntime | |
import facefusion.globals | |
import facefusion.processors.frame.core as frame_processors | |
from facefusion import config, process_manager, logger, wording | |
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face | |
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder | |
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back | |
from facefusion.execution import apply_execution_provider_options | |
from facefusion.content_analyser import clear_content_analyser | |
from facefusion.face_store import get_reference_faces | |
from facefusion.normalizer import normalize_output_path | |
from facefusion.thread_helper import thread_lock, thread_semaphore | |
from facefusion.typing import Face, VisionFrame, UpdateProgress, ProcessMode, ModelSet, OptionsWithModel, QueuePayload | |
from facefusion.common_helper import create_metavar | |
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path | |
from facefusion.download import conditional_download, is_download_done | |
from facefusion.vision import read_image, read_static_image, write_image | |
from facefusion.processors.frame.typings import FaceEnhancerInputs | |
from facefusion.processors.frame import globals as frame_processors_globals | |
from facefusion.processors.frame import choices as frame_processors_choices | |
FRAME_PROCESSOR = None | |
NAME = __name__.upper() | |
MODELS : ModelSet =\ | |
{ | |
'codeformer': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx', | |
'path': resolve_relative_path('../.assets/models/codeformer.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 512) | |
}, | |
'gfpgan_1.2': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx', | |
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 512) | |
}, | |
'gfpgan_1.3': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx', | |
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 512) | |
}, | |
'gfpgan_1.4': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx', | |
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 512) | |
}, | |
'gpen_bfr_256': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx', | |
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'), | |
'template': 'arcface_128_v2', | |
'size': (256, 256) | |
}, | |
'gpen_bfr_512': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx', | |
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 512) | |
}, | |
'gpen_bfr_1024': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_1024.onnx', | |
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx'), | |
'template': 'ffhq_512', | |
'size': (1024, 1024) | |
}, | |
'gpen_bfr_2048': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_2048.onnx', | |
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx'), | |
'template': 'ffhq_512', | |
'size': (2048, 2048) | |
}, | |
'restoreformer_plus_plus': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer_plus_plus.onnx', | |
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 512) | |
} | |
} | |
OPTIONS : Optional[OptionsWithModel] = None | |
def get_frame_processor() -> Any: | |
global FRAME_PROCESSOR | |
with thread_lock(): | |
while process_manager.is_checking(): | |
sleep(0.5) | |
if FRAME_PROCESSOR is None: | |
model_path = get_options('model').get('path') | |
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_device_id, facefusion.globals.execution_providers)) | |
return FRAME_PROCESSOR | |
def clear_frame_processor() -> None: | |
global FRAME_PROCESSOR | |
FRAME_PROCESSOR = None | |
def get_options(key : Literal['model']) -> Any: | |
global OPTIONS | |
if OPTIONS is None: | |
OPTIONS =\ | |
{ | |
'model': MODELS[frame_processors_globals.face_enhancer_model] | |
} | |
return OPTIONS.get(key) | |
def set_options(key : Literal['model'], value : Any) -> None: | |
global OPTIONS | |
OPTIONS[key] = value | |
def register_args(program : ArgumentParser) -> None: | |
program.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('frame_processors.face_enhancer_model', 'gfpgan_1.4'), choices = frame_processors_choices.face_enhancer_models) | |
program.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.face_enhancer_blend', '80'), choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range)) | |
def apply_args(program : ArgumentParser) -> None: | |
args = program.parse_args() | |
frame_processors_globals.face_enhancer_model = args.face_enhancer_model | |
frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend | |
def pre_check() -> bool: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_url = get_options('model').get('url') | |
model_path = get_options('model').get('path') | |
if not facefusion.globals.skip_download: | |
process_manager.check() | |
conditional_download(download_directory_path, [ model_url ]) | |
process_manager.end() | |
return is_file(model_path) | |
def post_check() -> bool: | |
model_url = get_options('model').get('url') | |
model_path = get_options('model').get('path') | |
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path): | |
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME) | |
return False | |
if not is_file(model_path): | |
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME) | |
return False | |
return True | |
def pre_process(mode : ProcessMode) -> bool: | |
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path): | |
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) | |
return False | |
if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path): | |
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME) | |
return False | |
return True | |
def post_process() -> None: | |
read_static_image.cache_clear() | |
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate': | |
clear_frame_processor() | |
if facefusion.globals.video_memory_strategy == 'strict': | |
clear_face_analyser() | |
clear_content_analyser() | |
clear_face_occluder() | |
def enhance_face(target_face: Face, temp_vision_frame : VisionFrame) -> VisionFrame: | |
model_template = get_options('model').get('template') | |
model_size = get_options('model').get('size') | |
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), model_template, model_size) | |
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0)) | |
crop_mask_list =\ | |
[ | |
box_mask | |
] | |
if 'occlusion' in facefusion.globals.face_mask_types: | |
occlusion_mask = create_occlusion_mask(crop_vision_frame) | |
crop_mask_list.append(occlusion_mask) | |
crop_vision_frame = prepare_crop_frame(crop_vision_frame) | |
crop_vision_frame = apply_enhance(crop_vision_frame) | |
crop_vision_frame = normalize_crop_frame(crop_vision_frame) | |
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1) | |
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix) | |
temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame) | |
return temp_vision_frame | |
def apply_enhance(crop_vision_frame : VisionFrame) -> VisionFrame: | |
frame_processor = get_frame_processor() | |
frame_processor_inputs = {} | |
for frame_processor_input in frame_processor.get_inputs(): | |
if frame_processor_input.name == 'input': | |
frame_processor_inputs[frame_processor_input.name] = crop_vision_frame | |
if frame_processor_input.name == 'weight': | |
weight = numpy.array([ 1 ]).astype(numpy.double) | |
frame_processor_inputs[frame_processor_input.name] = weight | |
with thread_semaphore(): | |
crop_vision_frame = frame_processor.run(None, frame_processor_inputs)[0][0] | |
return crop_vision_frame | |
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: | |
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 | |
crop_vision_frame = (crop_vision_frame - 0.5) / 0.5 | |
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) | |
return crop_vision_frame | |
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: | |
crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1) | |
crop_vision_frame = (crop_vision_frame + 1) / 2 | |
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0) | |
crop_vision_frame = (crop_vision_frame * 255.0).round() | |
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1] | |
return crop_vision_frame | |
def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame: | |
face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100) | |
temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0) | |
return temp_vision_frame | |
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: | |
return enhance_face(target_face, temp_vision_frame) | |
def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame: | |
reference_faces = inputs.get('reference_faces') | |
target_vision_frame = inputs.get('target_vision_frame') | |
if facefusion.globals.face_selector_mode == 'many': | |
many_faces = get_many_faces(target_vision_frame) | |
if many_faces: | |
for target_face in many_faces: | |
target_vision_frame = enhance_face(target_face, target_vision_frame) | |
if facefusion.globals.face_selector_mode == 'one': | |
target_face = get_one_face(target_vision_frame) | |
if target_face: | |
target_vision_frame = enhance_face(target_face, target_vision_frame) | |
if facefusion.globals.face_selector_mode == 'reference': | |
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance) | |
if similar_faces: | |
for similar_face in similar_faces: | |
target_vision_frame = enhance_face(similar_face, target_vision_frame) | |
return target_vision_frame | |
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: | |
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None | |
for queue_payload in process_manager.manage(queue_payloads): | |
target_vision_path = queue_payload['frame_path'] | |
target_vision_frame = read_image(target_vision_path) | |
output_vision_frame = process_frame( | |
{ | |
'reference_faces': reference_faces, | |
'target_vision_frame': target_vision_frame | |
}) | |
write_image(target_vision_path, output_vision_frame) | |
update_progress(1) | |
def process_image(source_path : str, target_path : str, output_path : str) -> None: | |
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None | |
target_vision_frame = read_static_image(target_path) | |
output_vision_frame = process_frame( | |
{ | |
'reference_faces': reference_faces, | |
'target_vision_frame': target_vision_frame | |
}) | |
write_image(output_path, output_vision_frame) | |
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: | |
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames) | |