EG / face_enhancer.py
victorisgeek's picture
Upload face_enhancer.py
0c1eceb verified
raw
history blame
12.3 kB
from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
from time import sleep
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, process_manager, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.normalizer import normalize_output_path
from facefusion.thread_helper import thread_lock, thread_semaphore
from facefusion.typing import Face, VisionFrame, UpdateProgress, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
FRAME_PROCESSOR = None
NAME = __name__.upper()
MODELS : ModelSet =\
{
'codeformer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx',
'path': resolve_relative_path('../.assets/models/codeformer.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gfpgan_1.2':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx',
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gfpgan_1.3':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx',
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gfpgan_1.4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx',
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gpen_bfr_256':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'),
'template': 'arcface_128_v2',
'size': (256, 256)
},
'gpen_bfr_512':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gpen_bfr_1024':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_1024.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx'),
'template': 'ffhq_512',
'size': (1024, 1024)
},
'gpen_bfr_2048':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_2048.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx'),
'template': 'ffhq_512',
'size': (2048, 2048)
},
'restoreformer_plus_plus':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer_plus_plus.onnx',
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
}
}
OPTIONS : Optional[OptionsWithModel] = None
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with thread_lock():
while process_manager.is_checking():
sleep(0.5)
if FRAME_PROCESSOR is None:
model_path = get_options('model').get('path')
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_device_id, facefusion.globals.execution_providers))
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_enhancer_model]
}
return OPTIONS.get(key)
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value
def register_args(program : ArgumentParser) -> None:
program.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('frame_processors.face_enhancer_model', 'gfpgan_1.4'), choices = frame_processors_choices.face_enhancer_models)
program.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.face_enhancer_blend', '80'), choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range))
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_enhancer_model = args.face_enhancer_model
frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download:
process_manager.check()
conditional_download(download_directory_path, [ model_url ])
process_manager.end()
return is_file(model_path)
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
if not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path):
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
def enhance_face(target_face: Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_options('model').get('template')
model_size = get_options('model').get('size')
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), model_template, model_size)
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0))
crop_mask_list =\
[
box_mask
]
if 'occlusion' in facefusion.globals.face_mask_types:
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_mask_list.append(occlusion_mask)
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
crop_vision_frame = apply_enhance(crop_vision_frame)
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame)
return temp_vision_frame
def apply_enhance(crop_vision_frame : VisionFrame) -> VisionFrame:
frame_processor = get_frame_processor()
frame_processor_inputs = {}
for frame_processor_input in frame_processor.get_inputs():
if frame_processor_input.name == 'input':
frame_processor_inputs[frame_processor_input.name] = crop_vision_frame
if frame_processor_input.name == 'weight':
weight = numpy.array([ 1 ]).astype(numpy.double)
frame_processor_inputs[frame_processor_input.name] = weight
with thread_semaphore():
crop_vision_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
return crop_vision_frame
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
crop_vision_frame = (crop_vision_frame - 0.5) / 0.5
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1)
crop_vision_frame = (crop_vision_frame + 1) / 2
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)
crop_vision_frame = (crop_vision_frame * 255.0).round()
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
return crop_vision_frame
def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame:
face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100)
temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0)
return temp_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return enhance_face(target_face, temp_vision_frame)
def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
target_vision_frame = inputs.get('target_vision_frame')
if facefusion.globals.face_selector_mode == 'many':
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = enhance_face(target_face, target_vision_frame)
if facefusion.globals.face_selector_mode == 'one':
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = enhance_face(target_face, target_vision_frame)
if facefusion.globals.face_selector_mode == 'reference':
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = enhance_face(similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)