Spaces:
Running
Running
File size: 12,281 Bytes
0c1eceb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
from time import sleep
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, process_manager, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.normalizer import normalize_output_path
from facefusion.thread_helper import thread_lock, thread_semaphore
from facefusion.typing import Face, VisionFrame, UpdateProgress, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
FRAME_PROCESSOR = None
NAME = __name__.upper()
MODELS : ModelSet =\
{
'codeformer':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx',
'path': resolve_relative_path('../.assets/models/codeformer.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gfpgan_1.2':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx',
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gfpgan_1.3':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx',
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gfpgan_1.4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx',
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gpen_bfr_256':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'),
'template': 'arcface_128_v2',
'size': (256, 256)
},
'gpen_bfr_512':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
},
'gpen_bfr_1024':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_1024.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx'),
'template': 'ffhq_512',
'size': (1024, 1024)
},
'gpen_bfr_2048':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_2048.onnx',
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx'),
'template': 'ffhq_512',
'size': (2048, 2048)
},
'restoreformer_plus_plus':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer_plus_plus.onnx',
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx'),
'template': 'ffhq_512',
'size': (512, 512)
}
}
OPTIONS : Optional[OptionsWithModel] = None
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with thread_lock():
while process_manager.is_checking():
sleep(0.5)
if FRAME_PROCESSOR is None:
model_path = get_options('model').get('path')
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_device_id, facefusion.globals.execution_providers))
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_enhancer_model]
}
return OPTIONS.get(key)
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value
def register_args(program : ArgumentParser) -> None:
program.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('frame_processors.face_enhancer_model', 'gfpgan_1.4'), choices = frame_processors_choices.face_enhancer_models)
program.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.face_enhancer_blend', '80'), choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range))
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_enhancer_model = args.face_enhancer_model
frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download:
process_manager.check()
conditional_download(download_directory_path, [ model_url ])
process_manager.end()
return is_file(model_path)
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
if not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path):
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
def enhance_face(target_face: Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_options('model').get('template')
model_size = get_options('model').get('size')
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), model_template, model_size)
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0))
crop_mask_list =\
[
box_mask
]
if 'occlusion' in facefusion.globals.face_mask_types:
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_mask_list.append(occlusion_mask)
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
crop_vision_frame = apply_enhance(crop_vision_frame)
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame)
return temp_vision_frame
def apply_enhance(crop_vision_frame : VisionFrame) -> VisionFrame:
frame_processor = get_frame_processor()
frame_processor_inputs = {}
for frame_processor_input in frame_processor.get_inputs():
if frame_processor_input.name == 'input':
frame_processor_inputs[frame_processor_input.name] = crop_vision_frame
if frame_processor_input.name == 'weight':
weight = numpy.array([ 1 ]).astype(numpy.double)
frame_processor_inputs[frame_processor_input.name] = weight
with thread_semaphore():
crop_vision_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
return crop_vision_frame
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
crop_vision_frame = (crop_vision_frame - 0.5) / 0.5
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1)
crop_vision_frame = (crop_vision_frame + 1) / 2
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)
crop_vision_frame = (crop_vision_frame * 255.0).round()
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
return crop_vision_frame
def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame:
face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100)
temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0)
return temp_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return enhance_face(target_face, temp_vision_frame)
def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
target_vision_frame = inputs.get('target_vision_frame')
if facefusion.globals.face_selector_mode == 'many':
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = enhance_face(target_face, target_vision_frame)
if facefusion.globals.face_selector_mode == 'one':
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = enhance_face(target_face, target_vision_frame)
if facefusion.globals.face_selector_mode == 'reference':
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = enhance_face(similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)
|