File size: 12,281 Bytes
0c1eceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
from time import sleep
import cv2
import numpy
import onnxruntime

import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, process_manager, logger, wording
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.execution import apply_execution_provider_options
from facefusion.content_analyser import clear_content_analyser
from facefusion.face_store import get_reference_faces
from facefusion.normalizer import normalize_output_path
from facefusion.thread_helper import thread_lock, thread_semaphore
from facefusion.typing import Face, VisionFrame, UpdateProgress, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image
from facefusion.processors.frame.typings import FaceEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices

FRAME_PROCESSOR = None
NAME = __name__.upper()
MODELS : ModelSet =\
{
	'codeformer':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx',
		'path': resolve_relative_path('../.assets/models/codeformer.onnx'),
		'template': 'ffhq_512',
		'size': (512, 512)
	},
	'gfpgan_1.2':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx',
		'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'),
		'template': 'ffhq_512',
		'size': (512, 512)
	},
	'gfpgan_1.3':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx',
		'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'),
		'template': 'ffhq_512',
		'size': (512, 512)
	},
	'gfpgan_1.4':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx',
		'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'),
		'template': 'ffhq_512',
		'size': (512, 512)
	},
	'gpen_bfr_256':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx',
		'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'),
		'template': 'arcface_128_v2',
		'size': (256, 256)
	},
	'gpen_bfr_512':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx',
		'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'),
		'template': 'ffhq_512',
		'size': (512, 512)
	},
	'gpen_bfr_1024':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_1024.onnx',
		'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx'),
		'template': 'ffhq_512',
		'size': (1024, 1024)
	},
	'gpen_bfr_2048':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_2048.onnx',
		'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx'),
		'template': 'ffhq_512',
		'size': (2048, 2048)
	},
	'restoreformer_plus_plus':
	{
		'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer_plus_plus.onnx',
		'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx'),
		'template': 'ffhq_512',
		'size': (512, 512)
	}
}
OPTIONS : Optional[OptionsWithModel] = None


def get_frame_processor() -> Any:
	global FRAME_PROCESSOR

	with thread_lock():
		while process_manager.is_checking():
			sleep(0.5)
		if FRAME_PROCESSOR is None:
			model_path = get_options('model').get('path')
			FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_device_id, facefusion.globals.execution_providers))
	return FRAME_PROCESSOR


def clear_frame_processor() -> None:
	global FRAME_PROCESSOR

	FRAME_PROCESSOR = None


def get_options(key : Literal['model']) -> Any:
	global OPTIONS

	if OPTIONS is None:
		OPTIONS =\
		{
			'model': MODELS[frame_processors_globals.face_enhancer_model]
		}
	return OPTIONS.get(key)


def set_options(key : Literal['model'], value : Any) -> None:
	global OPTIONS

	OPTIONS[key] = value


def register_args(program : ArgumentParser) -> None:
	program.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('frame_processors.face_enhancer_model', 'gfpgan_1.4'), choices = frame_processors_choices.face_enhancer_models)
	program.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.face_enhancer_blend', '80'), choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range))


def apply_args(program : ArgumentParser) -> None:
	args = program.parse_args()
	frame_processors_globals.face_enhancer_model = args.face_enhancer_model
	frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend


def pre_check() -> bool:
	download_directory_path = resolve_relative_path('../.assets/models')
	model_url = get_options('model').get('url')
	model_path = get_options('model').get('path')

	if not facefusion.globals.skip_download:
		process_manager.check()
		conditional_download(download_directory_path, [ model_url ])
		process_manager.end()
	return is_file(model_path)


def post_check() -> bool:
	model_url = get_options('model').get('url')
	model_path = get_options('model').get('path')

	if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
		logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
		return False
	if not is_file(model_path):
		logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
		return False
	return True


def pre_process(mode : ProcessMode) -> bool:
	if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
		logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
		return False
	if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path):
		logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
		return False
	return True


def post_process() -> None:
	read_static_image.cache_clear()
	if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
		clear_frame_processor()
	if facefusion.globals.video_memory_strategy == 'strict':
		clear_face_analyser()
		clear_content_analyser()
		clear_face_occluder()


def enhance_face(target_face: Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	model_template = get_options('model').get('template')
	model_size = get_options('model').get('size')
	crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), model_template, model_size)
	box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0))
	crop_mask_list =\
	[
		box_mask
	]

	if 'occlusion' in facefusion.globals.face_mask_types:
		occlusion_mask = create_occlusion_mask(crop_vision_frame)
		crop_mask_list.append(occlusion_mask)
	crop_vision_frame = prepare_crop_frame(crop_vision_frame)
	crop_vision_frame = apply_enhance(crop_vision_frame)
	crop_vision_frame = normalize_crop_frame(crop_vision_frame)
	crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
	paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
	temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame)
	return temp_vision_frame


def apply_enhance(crop_vision_frame : VisionFrame) -> VisionFrame:
	frame_processor = get_frame_processor()
	frame_processor_inputs = {}

	for frame_processor_input in frame_processor.get_inputs():
		if frame_processor_input.name == 'input':
			frame_processor_inputs[frame_processor_input.name] = crop_vision_frame
		if frame_processor_input.name == 'weight':
			weight = numpy.array([ 1 ]).astype(numpy.double)
			frame_processor_inputs[frame_processor_input.name] = weight
	with thread_semaphore():
		crop_vision_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
	return crop_vision_frame


def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
	crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
	crop_vision_frame = (crop_vision_frame - 0.5) / 0.5
	crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
	return crop_vision_frame


def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
	crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1)
	crop_vision_frame = (crop_vision_frame + 1) / 2
	crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)
	crop_vision_frame = (crop_vision_frame * 255.0).round()
	crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
	return crop_vision_frame


def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame:
	face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100)
	temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0)
	return temp_vision_frame


def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
	return enhance_face(target_face, temp_vision_frame)


def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame:
	reference_faces = inputs.get('reference_faces')
	target_vision_frame = inputs.get('target_vision_frame')

	if facefusion.globals.face_selector_mode == 'many':
		many_faces = get_many_faces(target_vision_frame)
		if many_faces:
			for target_face in many_faces:
				target_vision_frame = enhance_face(target_face, target_vision_frame)
	if facefusion.globals.face_selector_mode == 'one':
		target_face = get_one_face(target_vision_frame)
		if target_face:
			target_vision_frame = enhance_face(target_face, target_vision_frame)
	if facefusion.globals.face_selector_mode == 'reference':
		similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
		if similar_faces:
			for similar_face in similar_faces:
				target_vision_frame = enhance_face(similar_face, target_vision_frame)
	return target_vision_frame


def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
	reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None

	for queue_payload in process_manager.manage(queue_payloads):
		target_vision_path = queue_payload['frame_path']
		target_vision_frame = read_image(target_vision_path)
		output_vision_frame = process_frame(
		{
			'reference_faces': reference_faces,
			'target_vision_frame': target_vision_frame
		})
		write_image(target_vision_path, output_vision_frame)
		update_progress(1)


def process_image(source_path : str, target_path : str, output_path : str) -> None:
	reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
	target_vision_frame = read_static_image(target_path)
	output_vision_frame = process_frame(
	{
		'reference_faces': reference_faces,
		'target_vision_frame': target_vision_frame
	})
	write_image(output_path, output_vision_frame)


def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
	frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)