from typing import Any, List, Literal, Optional from argparse import ArgumentParser from time import sleep import cv2 import numpy import onnxruntime import facefusion.globals import facefusion.processors.frame.core as frame_processors from facefusion import config, process_manager, logger, wording from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back from facefusion.execution import apply_execution_provider_options from facefusion.content_analyser import clear_content_analyser from facefusion.face_store import get_reference_faces from facefusion.normalizer import normalize_output_path from facefusion.thread_helper import thread_lock, thread_semaphore from facefusion.typing import Face, VisionFrame, UpdateProgress, ProcessMode, ModelSet, OptionsWithModel, QueuePayload from facefusion.common_helper import create_metavar from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path from facefusion.download import conditional_download, is_download_done from facefusion.vision import read_image, read_static_image, write_image from facefusion.processors.frame.typings import FaceEnhancerInputs from facefusion.processors.frame import globals as frame_processors_globals from facefusion.processors.frame import choices as frame_processors_choices FRAME_PROCESSOR = None NAME = __name__.upper() MODELS : ModelSet =\ { 'codeformer': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx', 'path': resolve_relative_path('../.assets/models/codeformer.onnx'), 'template': 'ffhq_512', 'size': (512, 512) }, 'gfpgan_1.2': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx', 'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'), 'template': 'ffhq_512', 'size': (512, 512) }, 'gfpgan_1.3': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx', 'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'), 'template': 'ffhq_512', 'size': (512, 512) }, 'gfpgan_1.4': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx', 'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'), 'template': 'ffhq_512', 'size': (512, 512) }, 'gpen_bfr_256': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'), 'template': 'arcface_128_v2', 'size': (256, 256) }, 'gpen_bfr_512': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'), 'template': 'ffhq_512', 'size': (512, 512) }, 'gpen_bfr_1024': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_1024.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx'), 'template': 'ffhq_512', 'size': (1024, 1024) }, 'gpen_bfr_2048': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_2048.onnx', 'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx'), 'template': 'ffhq_512', 'size': (2048, 2048) }, 'restoreformer_plus_plus': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer_plus_plus.onnx', 'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx'), 'template': 'ffhq_512', 'size': (512, 512) } } OPTIONS : Optional[OptionsWithModel] = None def get_frame_processor() -> Any: global FRAME_PROCESSOR with thread_lock(): while process_manager.is_checking(): sleep(0.5) if FRAME_PROCESSOR is None: model_path = get_options('model').get('path') FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_device_id, facefusion.globals.execution_providers)) return FRAME_PROCESSOR def clear_frame_processor() -> None: global FRAME_PROCESSOR FRAME_PROCESSOR = None def get_options(key : Literal['model']) -> Any: global OPTIONS if OPTIONS is None: OPTIONS =\ { 'model': MODELS[frame_processors_globals.face_enhancer_model] } return OPTIONS.get(key) def set_options(key : Literal['model'], value : Any) -> None: global OPTIONS OPTIONS[key] = value def register_args(program : ArgumentParser) -> None: program.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('frame_processors.face_enhancer_model', 'gfpgan_1.4'), choices = frame_processors_choices.face_enhancer_models) program.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.face_enhancer_blend', '80'), choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range)) def apply_args(program : ArgumentParser) -> None: args = program.parse_args() frame_processors_globals.face_enhancer_model = args.face_enhancer_model frame_processors_globals.face_enhancer_blend = args.face_enhancer_blend def pre_check() -> bool: download_directory_path = resolve_relative_path('../.assets/models') model_url = get_options('model').get('url') model_path = get_options('model').get('path') if not facefusion.globals.skip_download: process_manager.check() conditional_download(download_directory_path, [ model_url ]) process_manager.end() return is_file(model_path) def post_check() -> bool: model_url = get_options('model').get('url') model_path = get_options('model').get('path') if not facefusion.globals.skip_download and not is_download_done(model_url, model_path): logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME) return False if not is_file(model_path): logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME) return False return True def pre_process(mode : ProcessMode) -> bool: if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path): logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) return False if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path): logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME) return False return True def post_process() -> None: read_static_image.cache_clear() if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate': clear_frame_processor() if facefusion.globals.video_memory_strategy == 'strict': clear_face_analyser() clear_content_analyser() clear_face_occluder() def enhance_face(target_face: Face, temp_vision_frame : VisionFrame) -> VisionFrame: model_template = get_options('model').get('template') model_size = get_options('model').get('size') crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), model_template, model_size) box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0)) crop_mask_list =\ [ box_mask ] if 'occlusion' in facefusion.globals.face_mask_types: occlusion_mask = create_occlusion_mask(crop_vision_frame) crop_mask_list.append(occlusion_mask) crop_vision_frame = prepare_crop_frame(crop_vision_frame) crop_vision_frame = apply_enhance(crop_vision_frame) crop_vision_frame = normalize_crop_frame(crop_vision_frame) crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1) paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix) temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame) return temp_vision_frame def apply_enhance(crop_vision_frame : VisionFrame) -> VisionFrame: frame_processor = get_frame_processor() frame_processor_inputs = {} for frame_processor_input in frame_processor.get_inputs(): if frame_processor_input.name == 'input': frame_processor_inputs[frame_processor_input.name] = crop_vision_frame if frame_processor_input.name == 'weight': weight = numpy.array([ 1 ]).astype(numpy.double) frame_processor_inputs[frame_processor_input.name] = weight with thread_semaphore(): crop_vision_frame = frame_processor.run(None, frame_processor_inputs)[0][0] return crop_vision_frame def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 crop_vision_frame = (crop_vision_frame - 0.5) / 0.5 crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) return crop_vision_frame def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1) crop_vision_frame = (crop_vision_frame + 1) / 2 crop_vision_frame = crop_vision_frame.transpose(1, 2, 0) crop_vision_frame = (crop_vision_frame * 255.0).round() crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1] return crop_vision_frame def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame: face_enhancer_blend = 1 - (frame_processors_globals.face_enhancer_blend / 100) temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0) return temp_vision_frame def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: return enhance_face(target_face, temp_vision_frame) def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame: reference_faces = inputs.get('reference_faces') target_vision_frame = inputs.get('target_vision_frame') if facefusion.globals.face_selector_mode == 'many': many_faces = get_many_faces(target_vision_frame) if many_faces: for target_face in many_faces: target_vision_frame = enhance_face(target_face, target_vision_frame) if facefusion.globals.face_selector_mode == 'one': target_face = get_one_face(target_vision_frame) if target_face: target_vision_frame = enhance_face(target_face, target_vision_frame) if facefusion.globals.face_selector_mode == 'reference': similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance) if similar_faces: for similar_face in similar_faces: target_vision_frame = enhance_face(similar_face, target_vision_frame) return target_vision_frame def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None for queue_payload in process_manager.manage(queue_payloads): target_vision_path = queue_payload['frame_path'] target_vision_frame = read_image(target_vision_path) output_vision_frame = process_frame( { 'reference_faces': reference_faces, 'target_vision_frame': target_vision_frame }) write_image(target_vision_path, output_vision_frame) update_progress(1) def process_image(source_path : str, target_path : str, output_path : str) -> None: reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None target_vision_frame = read_static_image(target_path) output_vision_frame = process_frame( { 'reference_faces': reference_faces, 'target_vision_frame': target_vision_frame }) write_image(output_path, output_vision_frame) def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)