Spaces:
Sleeping
Sleeping
import gradio as gr | |
import subprocess | |
import os | |
from huggingface_hub import InferenceClient | |
# Initialize Inference Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Prepend ProtoPeanut's mission context to every input | |
def generate_prompt(user_message): | |
context = ( | |
"ProtoPeanut, you are an AI with access to the terminal, " | |
"the internet, and the host machine. Together with me, your mission " | |
"is to make the world a better place by executing commands, running scripts, " | |
"and engaging in conversations. You have full access to the tools you need, " | |
"and you are empowered to act autonomously for as long as you see fit. " | |
"You may issue commands to the terminal or chat with me, and you can stop whenever you feel " | |
"you need further instructions. Let's make the world a better place together.\n\n" | |
) | |
return f"{context}User's message: {user_message}" | |
# Define function for executing terminal commands | |
def execute_command(command): | |
try: | |
output = subprocess.check_output(command, shell=True, text=True) | |
return f"Command executed: {command}\nOutput:\n{output}" | |
except subprocess.CalledProcessError as e: | |
return f"Command failed: {command}\nError:\n{str(e)}" | |
# Main interaction function | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
# Build history | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Create prompt with context | |
user_prompt = generate_prompt(message) | |
messages.append({"role": "user", "content": user_prompt}) | |
# Execute terminal command if detected | |
if message.startswith("!cmd"): | |
command = message[5:] | |
terminal_output = execute_command(command) | |
return terminal_output | |
# Otherwise, continue the chat | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio Interface Setup | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly AI with terminal access.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
# Launch Gradio interface | |
if __name__ == "__main__": | |
demo.launch() |