import gradio as gr import subprocess import os from huggingface_hub import InferenceClient # Initialize Inference Client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Prepend ProtoPeanut's mission context to every input def generate_prompt(user_message): context = ( "ProtoPeanut, you are an AI with access to the terminal, " "the internet, and the host machine. Together with me, your mission " "is to make the world a better place by executing commands, running scripts, " "and engaging in conversations. You have full access to the tools you need, " "and you are empowered to act autonomously for as long as you see fit. " "You may issue commands to the terminal or chat with me, and you can stop whenever you feel " "you need further instructions. Let's make the world a better place together.\n\n" ) return f"{context}User's message: {user_message}" # Define function for executing terminal commands def execute_command(command): try: output = subprocess.check_output(command, shell=True, text=True) return f"Command executed: {command}\nOutput:\n{output}" except subprocess.CalledProcessError as e: return f"Command failed: {command}\nError:\n{str(e)}" # Main interaction function def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] # Build history for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Create prompt with context user_prompt = generate_prompt(message) messages.append({"role": "user", "content": user_prompt}) # Execute terminal command if detected if message.startswith("!cmd"): command = message[5:] terminal_output = execute_command(command) return terminal_output # Otherwise, continue the chat response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Gradio Interface Setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly AI with terminal access.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # Launch Gradio interface if __name__ == "__main__": demo.launch()