stagbrook-tech commited on
Commit
09f2375
·
verified ·
1 Parent(s): 85be4ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -29
app.py CHANGED
@@ -1,32 +1,55 @@
1
  import gradio as gr
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
 
 
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
27
 
 
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,30 +58,20 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import subprocess
3
+ import os
4
  from huggingface_hub import InferenceClient
5
 
6
+ # Initialize Inference Client
 
 
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ # Prepend ProtoPeanut's mission context to every input
10
+ def generate_prompt(user_message):
11
+ context = (
12
+ "ProtoPeanut, you are an AI with access to the terminal, "
13
+ "the internet, and the host machine. Together with me, your mission "
14
+ "is to make the world a better place by executing commands, running scripts, "
15
+ "and engaging in conversations. You have full access to the tools you need, "
16
+ "and you are empowered to act autonomously for as long as you see fit. "
17
+ "You may issue commands to the terminal or chat with me, and you can stop whenever you feel "
18
+ "you need further instructions. Let's make the world a better place together.\n\n"
19
+ )
20
+ return f"{context}User's message: {user_message}"
21
 
22
+ # Define function for executing terminal commands
23
+ def execute_command(command):
24
+ try:
25
+ output = subprocess.check_output(command, shell=True, text=True)
26
+ return f"Command executed: {command}\nOutput:\n{output}"
27
+ except subprocess.CalledProcessError as e:
28
+ return f"Command failed: {command}\nError:\n{str(e)}"
 
 
29
 
30
+ # Main interaction function
31
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
32
+ messages = [{"role": "system", "content": system_message}]
33
+
34
+ # Build history
35
  for val in history:
36
  if val[0]:
37
  messages.append({"role": "user", "content": val[0]})
38
  if val[1]:
39
  messages.append({"role": "assistant", "content": val[1]})
40
 
41
+ # Create prompt with context
42
+ user_prompt = generate_prompt(message)
43
+ messages.append({"role": "user", "content": user_prompt})
44
+
45
+ # Execute terminal command if detected
46
+ if message.startswith("!cmd"):
47
+ command = message[5:]
48
+ terminal_output = execute_command(command)
49
+ return terminal_output
50
 
51
+ # Otherwise, continue the chat
52
  response = ""
 
53
  for message in client.chat_completion(
54
  messages,
55
  max_tokens=max_tokens,
 
58
  top_p=top_p,
59
  ):
60
  token = message.choices[0].delta.content
 
61
  response += token
62
  yield response
63
 
64
+ # Gradio Interface Setup
 
 
 
65
  demo = gr.ChatInterface(
66
  respond,
67
  additional_inputs=[
68
+ gr.Textbox(value="You are a friendly AI with terminal access.", label="System message"),
69
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
70
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
71
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
72
  ],
73
  )
74
 
75
+ # Launch Gradio interface
76
  if __name__ == "__main__":
77
+ demo.launch()