rahulvenkk
app.py updated
6dfcb0f
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import drop_path, to_2tuple
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
**kwargs
}
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., attn_head_dim=None, flash_attention=False, k_bias=False, legacy=True, xla_flash=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
self.legacy = legacy
self.xla_flash = xla_flash
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
if k_bias:
self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.k_bias = None
else:
self.q_bias = None
self.v_bias = None
self.k_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
if self.k_bias is not None:
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
else:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p)
x = x.transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
attn_head_dim=None, in_dim=None, flash_attention=False, k_bias=False, legacy=False, xla_flash=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, flash_attention=flash_attention, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if (init_values or 0) > 0:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
super().__init__()
img_size = to_2tuple(img_size)
self.tubelet_size = int(tubelet_size)
if num_frames is not None:
self.num_frames = int(num_frames)
self.num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
else:
self.num_frames = None
self.num_patches = None
self.img_size = img_size
self.patch_size = patch_size
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_channels=in_chans, out_channels=embed_dim,
kernel_size = (self.tubelet_size, patch_size[0],patch_size[1]),
stride=(self.tubelet_size, patch_size[0], patch_size[1]))
def forward(self, x, **kwargs):
# B, C, T, H, W = x.shape
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(positions,
d_hid,
apply_sinusoid=True):
''' Sinusoid position encoding table '''
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
if isinstance(positions, int):
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(positions)])
else:
assert hasattr(positions, '__len__')
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in positions])
if apply_sinusoid:
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)