File size: 7,560 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import drop_path, to_2tuple


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        **kwargs
    }


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
    
    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement 
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, flash_attention=False, k_bias=False, legacy=True, xla_flash=False):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.legacy = legacy

        self.xla_flash = xla_flash
        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)

        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
            if k_bias:
                self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            else:
                self.k_bias = None
        else:
            self.q_bias = None
            self.v_bias = None
            self.k_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            if self.k_bias is not None:
                qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
            else:
                qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))

        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p)
        x = x.transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 attn_head_dim=None, in_dim=None, flash_attention=False, k_bias=False, legacy=False, xla_flash=False):
        super().__init__()
        self.norm1 = norm_layer(dim)

        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, flash_attention=flash_attention, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if (init_values or 0) > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x):
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
        super().__init__()
        img_size = to_2tuple(img_size)

        self.tubelet_size = int(tubelet_size)
        if num_frames is not None:
            self.num_frames = int(num_frames)
            self.num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
        else:
            self.num_frames = None
            self.num_patches = None
        self.img_size = img_size
        self.patch_size = patch_size
        self.embed_dim = embed_dim

        self.proj = nn.Conv3d(in_channels=in_chans, out_channels=embed_dim, 
                            kernel_size = (self.tubelet_size,  patch_size[0],patch_size[1]), 
                            stride=(self.tubelet_size,  patch_size[0],  patch_size[1]))

    def forward(self, x, **kwargs):
        # B, C, T, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #     f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x
    
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(positions,
                                d_hid,
                                apply_sinusoid=True): 
    ''' Sinusoid position encoding table ''' 
    # TODO: make it with torch instead of numpy 
    def get_position_angle_vec(position): 
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] 

    if isinstance(positions, int):
        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(positions)])
    else:
        assert hasattr(positions, '__len__')
        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in positions])
    if apply_sinusoid:
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 

    return torch.FloatTensor(sinusoid_table).unsqueeze(0)