Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
porting-app-poc
#732
by
alozowski
HF staff
- opened
- app.py +34 -264
- pyproject.toml +2 -1
- requirements.txt +3 -1
- src/display/utils.py +3 -3
- src/leaderboard/filter_models.py +9 -6
- src/leaderboard/read_evals.py +5 -5
- src/submission/check_validity.py +0 -1
- src/tools/plots.py +1 -2
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import logging
|
|
|
4 |
import gradio as gr
|
5 |
-
import pandas as pd
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from huggingface_hub import snapshot_download
|
|
|
8 |
from gradio_space_ci import enable_space_ci
|
9 |
|
10 |
from src.display.about import (
|
@@ -49,14 +50,12 @@ from src.submission.submit import add_new_eval
|
|
49 |
from src.tools.collections import update_collections
|
50 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
51 |
|
52 |
-
|
53 |
# Configure logging
|
54 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
55 |
|
56 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
57 |
enable_space_ci()
|
58 |
|
59 |
-
|
60 |
def restart_space():
|
61 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
62 |
|
@@ -143,140 +142,6 @@ def load_and_create_plots():
|
|
143 |
return plot_df
|
144 |
|
145 |
|
146 |
-
# Searching and filtering
|
147 |
-
def update_table(
|
148 |
-
hidden_df: pd.DataFrame,
|
149 |
-
columns: list,
|
150 |
-
type_query: list,
|
151 |
-
precision_query: str,
|
152 |
-
size_query: list,
|
153 |
-
hide_models: list,
|
154 |
-
query: str,
|
155 |
-
):
|
156 |
-
filtered_df = filter_models(
|
157 |
-
df=hidden_df,
|
158 |
-
type_query=type_query,
|
159 |
-
size_query=size_query,
|
160 |
-
precision_query=precision_query,
|
161 |
-
hide_models=hide_models,
|
162 |
-
)
|
163 |
-
filtered_df = filter_queries(query, filtered_df)
|
164 |
-
df = select_columns(filtered_df, columns)
|
165 |
-
return df
|
166 |
-
|
167 |
-
|
168 |
-
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
169 |
-
query = request.query_params.get("query") or ""
|
170 |
-
return (
|
171 |
-
query,
|
172 |
-
query,
|
173 |
-
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
174 |
-
|
175 |
-
|
176 |
-
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
177 |
-
return df[(df[AutoEvalColumn.fullname.name].str.contains(query, case=False, na=False))]
|
178 |
-
|
179 |
-
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
180 |
-
return df[df[AutoEvalColumn.license.name].str.contains(query, case=False, na=False)]
|
181 |
-
|
182 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
183 |
-
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
184 |
-
dummy_col = [AutoEvalColumn.fullname.name]
|
185 |
-
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
|
186 |
-
return filtered_df
|
187 |
-
|
188 |
-
def filter_queries(query: str, df: pd.DataFrame):
|
189 |
-
tmp_result_df = []
|
190 |
-
|
191 |
-
# Empty query return the same df
|
192 |
-
if query == "":
|
193 |
-
return df
|
194 |
-
|
195 |
-
# all_queries = [q.strip() for q in query.split(";")]
|
196 |
-
# license_queries = []
|
197 |
-
all_queries = [q.strip() for q in query.split(";") if q.strip() != ""]
|
198 |
-
model_queries = [q for q in all_queries if not q.startswith("licence")]
|
199 |
-
license_queries_raw = [q for q in all_queries if q.startswith("license")]
|
200 |
-
license_queries = [
|
201 |
-
q.replace("license:", "").strip() for q in license_queries_raw if q.replace("license:", "").strip() != ""
|
202 |
-
]
|
203 |
-
|
204 |
-
# Handling model name search
|
205 |
-
for query in model_queries:
|
206 |
-
tmp_df = search_model(df, query)
|
207 |
-
if len(tmp_df) > 0:
|
208 |
-
tmp_result_df.append(tmp_df)
|
209 |
-
|
210 |
-
if not tmp_result_df and not license_queries:
|
211 |
-
# Nothing is found, no license_queries -> return empty df
|
212 |
-
return pd.DataFrame(columns=df.columns)
|
213 |
-
|
214 |
-
if tmp_result_df:
|
215 |
-
df = pd.concat(tmp_result_df)
|
216 |
-
df = df.drop_duplicates(
|
217 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
218 |
-
)
|
219 |
-
|
220 |
-
if not license_queries:
|
221 |
-
return df
|
222 |
-
|
223 |
-
# Handling license search
|
224 |
-
tmp_result_df = []
|
225 |
-
for query in license_queries:
|
226 |
-
tmp_df = search_license(df, query)
|
227 |
-
if len(tmp_df) > 0:
|
228 |
-
tmp_result_df.append(tmp_df)
|
229 |
-
|
230 |
-
if not tmp_result_df:
|
231 |
-
# Nothing is found, return empty df
|
232 |
-
return pd.DataFrame(columns=df.columns)
|
233 |
-
|
234 |
-
df = pd.concat(tmp_result_df)
|
235 |
-
df = df.drop_duplicates(
|
236 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
237 |
-
)
|
238 |
-
|
239 |
-
return df
|
240 |
-
|
241 |
-
|
242 |
-
def filter_models(
|
243 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
|
244 |
-
) -> pd.DataFrame:
|
245 |
-
# Show all models
|
246 |
-
if "Private or deleted" in hide_models:
|
247 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
248 |
-
else:
|
249 |
-
filtered_df = df
|
250 |
-
|
251 |
-
if "Contains a merge/moerge" in hide_models:
|
252 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
253 |
-
|
254 |
-
if "MoE" in hide_models:
|
255 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
|
256 |
-
|
257 |
-
if "Flagged" in hide_models:
|
258 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
259 |
-
|
260 |
-
type_emoji = [t[0] for t in type_query]
|
261 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
262 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
263 |
-
|
264 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
265 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
266 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
267 |
-
filtered_df = filtered_df.loc[mask]
|
268 |
-
|
269 |
-
return filtered_df
|
270 |
-
|
271 |
-
|
272 |
-
leaderboard_df = filter_models(
|
273 |
-
df=leaderboard_df,
|
274 |
-
type_query=[t.to_str(" : ") for t in ModelType],
|
275 |
-
size_query=list(NUMERIC_INTERVALS.keys()),
|
276 |
-
precision_query=[i.value.name for i in Precision],
|
277 |
-
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs
|
278 |
-
)
|
279 |
-
|
280 |
demo = gr.Blocks(css=custom_css)
|
281 |
with demo:
|
282 |
gr.HTML(TITLE)
|
@@ -284,135 +149,40 @@ with demo:
|
|
284 |
|
285 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
286 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
c.name
|
304 |
-
for c in fields(AutoEvalColumn)
|
305 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
306 |
-
],
|
307 |
-
label="Select columns to show",
|
308 |
-
elem_id="column-select",
|
309 |
-
interactive=True,
|
310 |
-
)
|
311 |
-
with gr.Row():
|
312 |
-
hide_models = gr.CheckboxGroup(
|
313 |
-
label="Hide models",
|
314 |
-
choices=["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
|
315 |
-
value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
|
316 |
-
interactive=True,
|
317 |
-
)
|
318 |
-
with gr.Column(min_width=320):
|
319 |
-
# with gr.Box(elem_id="box-filter"):
|
320 |
-
filter_columns_type = gr.CheckboxGroup(
|
321 |
-
label="Model types",
|
322 |
-
choices=[t.to_str() for t in ModelType],
|
323 |
-
value=[t.to_str() for t in ModelType],
|
324 |
-
interactive=True,
|
325 |
-
elem_id="filter-columns-type",
|
326 |
-
)
|
327 |
-
filter_columns_precision = gr.CheckboxGroup(
|
328 |
-
label="Precision",
|
329 |
-
choices=[i.value.name for i in Precision],
|
330 |
-
value=[i.value.name for i in Precision],
|
331 |
-
interactive=True,
|
332 |
-
elem_id="filter-columns-precision",
|
333 |
-
)
|
334 |
-
filter_columns_size = gr.CheckboxGroup(
|
335 |
-
label="Model sizes (in billions of parameters)",
|
336 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
337 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
338 |
-
interactive=True,
|
339 |
-
elem_id="filter-columns-size",
|
340 |
-
)
|
341 |
-
|
342 |
-
leaderboard_table = gr.components.Dataframe(
|
343 |
-
value=leaderboard_df[
|
344 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
345 |
-
+ shown_columns.value
|
346 |
-
+ [AutoEvalColumn.fullname.name]
|
347 |
],
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
visible=True,
|
353 |
-
)
|
354 |
-
|
355 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
356 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
357 |
-
value=original_df[COLS],
|
358 |
-
headers=COLS,
|
359 |
-
datatype=TYPES,
|
360 |
-
visible=False,
|
361 |
-
)
|
362 |
-
search_bar.submit(
|
363 |
-
update_table,
|
364 |
-
[
|
365 |
-
hidden_leaderboard_table_for_search,
|
366 |
-
shown_columns,
|
367 |
-
filter_columns_type,
|
368 |
-
filter_columns_precision,
|
369 |
-
filter_columns_size,
|
370 |
-
hide_models,
|
371 |
-
search_bar,
|
372 |
],
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
hidden_leaderboard_table_for_search,
|
382 |
-
shown_columns,
|
383 |
-
filter_columns_type,
|
384 |
-
filter_columns_precision,
|
385 |
-
filter_columns_size,
|
386 |
-
hide_models,
|
387 |
-
search_bar,
|
388 |
],
|
389 |
-
|
390 |
)
|
391 |
-
|
392 |
-
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
393 |
-
|
394 |
-
for selector in [
|
395 |
-
shown_columns,
|
396 |
-
filter_columns_type,
|
397 |
-
filter_columns_precision,
|
398 |
-
filter_columns_size,
|
399 |
-
hide_models,
|
400 |
-
]:
|
401 |
-
selector.change(
|
402 |
-
update_table,
|
403 |
-
[
|
404 |
-
hidden_leaderboard_table_for_search,
|
405 |
-
shown_columns,
|
406 |
-
filter_columns_type,
|
407 |
-
filter_columns_precision,
|
408 |
-
filter_columns_size,
|
409 |
-
hide_models,
|
410 |
-
search_bar,
|
411 |
-
],
|
412 |
-
leaderboard_table,
|
413 |
-
queue=True,
|
414 |
-
)
|
415 |
-
|
416 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
417 |
with gr.Row():
|
418 |
with gr.Column():
|
@@ -543,4 +313,4 @@ scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h
|
|
543 |
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
|
544 |
scheduler.start()
|
545 |
|
546 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import os
|
2 |
+
import pandas as pd
|
3 |
import logging
|
4 |
+
import time
|
5 |
import gradio as gr
|
|
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from huggingface_hub import snapshot_download
|
8 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
9 |
from gradio_space_ci import enable_space_ci
|
10 |
|
11 |
from src.display.about import (
|
|
|
50 |
from src.tools.collections import update_collections
|
51 |
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
52 |
|
|
|
53 |
# Configure logging
|
54 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
55 |
|
56 |
# Start ephemeral Spaces on PRs (see config in README.md)
|
57 |
enable_space_ci()
|
58 |
|
|
|
59 |
def restart_space():
|
60 |
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
61 |
|
|
|
142 |
return plot_df
|
143 |
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
demo = gr.Blocks(css=custom_css)
|
146 |
with demo:
|
147 |
gr.HTML(TITLE)
|
|
|
149 |
|
150 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
151 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
152 |
+
leaderboard = Leaderboard(
|
153 |
+
value=leaderboard_df,
|
154 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
155 |
+
select_columns=SelectColumns(
|
156 |
+
default_selection=[
|
157 |
+
c.name
|
158 |
+
for c in fields(AutoEvalColumn)
|
159 |
+
if c.displayed_by_default
|
160 |
+
],
|
161 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
|
162 |
+
label="Select Columns to Display:",
|
163 |
+
),
|
164 |
+
search_columns=[
|
165 |
+
AutoEvalColumn.model.name,
|
166 |
+
AutoEvalColumn.fullname.name,
|
167 |
+
AutoEvalColumn.license.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
],
|
169 |
+
hide_columns=[
|
170 |
+
c.name
|
171 |
+
for c in fields(AutoEvalColumn)
|
172 |
+
if c.hidden
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
],
|
174 |
+
filter_columns=[
|
175 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
176 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
177 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
178 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True),
|
179 |
+
ColumnFilter(AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True),
|
180 |
+
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
|
181 |
+
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
],
|
183 |
+
bool_checkboxgroup_label="Hide models"
|
184 |
)
|
185 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
|
187 |
with gr.Row():
|
188 |
with gr.Column():
|
|
|
313 |
scheduler.add_job(update_dynamic_files, "interval", hours=2) # launched every 2 hour
|
314 |
scheduler.start()
|
315 |
|
316 |
+
demo.queue(default_concurrency_limit=40).launch()
|
pyproject.toml
CHANGED
@@ -44,9 +44,10 @@ tqdm = "4.65.0"
|
|
44 |
transformers = "4.40.0"
|
45 |
tokenizers = ">=0.15.0"
|
46 |
gradio-space-ci = {git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3"}
|
47 |
-
gradio = "4.
|
48 |
isort = "^5.13.2"
|
49 |
ruff = "^0.3.5"
|
|
|
50 |
|
51 |
[build-system]
|
52 |
requires = ["poetry-core"]
|
|
|
44 |
transformers = "4.40.0"
|
45 |
tokenizers = ">=0.15.0"
|
46 |
gradio-space-ci = {git = "https://huggingface.co/spaces/Wauplin/gradio-space-ci", rev = "0.2.3"}
|
47 |
+
gradio = " 4.20.0"
|
48 |
isort = "^5.13.2"
|
49 |
ruff = "^0.3.5"
|
50 |
+
gradio-leaderboard = "0.0.8"
|
51 |
|
52 |
[build-system]
|
53 |
requires = ["poetry-core"]
|
requirements.txt
CHANGED
@@ -13,4 +13,6 @@ sentencepiece
|
|
13 |
tqdm==4.65.0
|
14 |
transformers==4.40.0
|
15 |
tokenizers>=0.15.0
|
16 |
-
gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/[email protected] # CI !!!
|
|
|
|
|
|
13 |
tqdm==4.65.0
|
14 |
transformers==4.40.0
|
15 |
tokenizers>=0.15.0
|
16 |
+
gradio-space-ci @ git+https://huggingface.co/spaces/Wauplin/[email protected] # CI !!!
|
17 |
+
gradio==4.20.0
|
18 |
+
gradio_leaderboard==0.0.8
|
src/display/utils.py
CHANGED
@@ -89,7 +89,7 @@ auto_eval_column_dict.append(
|
|
89 |
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
|
90 |
)
|
91 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
92 |
-
auto_eval_column_dict.append(["
|
93 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
94 |
# Dummy column for the search bar (hidden by the custom CSS)
|
95 |
auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname", "str", False, dummy=True)])
|
@@ -123,7 +123,7 @@ baseline_row = {
|
|
123 |
AutoEvalColumn.gsm8k.name: 0.21,
|
124 |
AutoEvalColumn.fullname.name: "baseline",
|
125 |
AutoEvalColumn.model_type.name: "",
|
126 |
-
AutoEvalColumn.
|
127 |
}
|
128 |
|
129 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
@@ -148,7 +148,7 @@ human_baseline_row = {
|
|
148 |
AutoEvalColumn.gsm8k.name: 100,
|
149 |
AutoEvalColumn.fullname.name: "human_baseline",
|
150 |
AutoEvalColumn.model_type.name: "",
|
151 |
-
AutoEvalColumn.
|
152 |
}
|
153 |
|
154 |
|
|
|
89 |
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
|
90 |
)
|
91 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
92 |
+
auto_eval_column_dict.append(["not_flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
93 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
94 |
# Dummy column for the search bar (hidden by the custom CSS)
|
95 |
auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname", "str", False, dummy=True)])
|
|
|
123 |
AutoEvalColumn.gsm8k.name: 0.21,
|
124 |
AutoEvalColumn.fullname.name: "baseline",
|
125 |
AutoEvalColumn.model_type.name: "",
|
126 |
+
AutoEvalColumn.not_flagged.name: False,
|
127 |
}
|
128 |
|
129 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
|
|
148 |
AutoEvalColumn.gsm8k.name: 100,
|
149 |
AutoEvalColumn.fullname.name: "human_baseline",
|
150 |
AutoEvalColumn.model_type.name: "",
|
151 |
+
AutoEvalColumn.not_flagged.name: False,
|
152 |
}
|
153 |
|
154 |
|
src/leaderboard/filter_models.py
CHANGED
@@ -133,11 +133,14 @@ DO_NOT_SUBMIT_MODELS = [
|
|
133 |
def flag_models(leaderboard_data: list[dict]):
|
134 |
"""Flags models based on external criteria or flagged status."""
|
135 |
for model_data in leaderboard_data:
|
136 |
-
#
|
137 |
-
if model_data[AutoEvalColumn.
|
138 |
-
flag_key = "merged"
|
139 |
-
else:
|
140 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
|
|
|
|
|
|
|
|
|
|
141 |
if flag_key in FLAGGED_MODELS:
|
142 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
143 |
issue_link = model_hyperlink(
|
@@ -147,9 +150,9 @@ def flag_models(leaderboard_data: list[dict]):
|
|
147 |
model_data[AutoEvalColumn.model.name] = (
|
148 |
f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
149 |
)
|
150 |
-
model_data[AutoEvalColumn.
|
151 |
else:
|
152 |
-
model_data[AutoEvalColumn.
|
153 |
|
154 |
|
155 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
|
|
133 |
def flag_models(leaderboard_data: list[dict]):
|
134 |
"""Flags models based on external criteria or flagged status."""
|
135 |
for model_data in leaderboard_data:
|
136 |
+
# If a model is not flagged, use its "fullname" as a key
|
137 |
+
if model_data[AutoEvalColumn.not_flagged.name]:
|
|
|
|
|
138 |
flag_key = model_data[AutoEvalColumn.fullname.name]
|
139 |
+
else:
|
140 |
+
# Merges and moes are flagged
|
141 |
+
flag_key = "merged"
|
142 |
+
|
143 |
+
# Reverse the logic: Check for non-flagged models instead
|
144 |
if flag_key in FLAGGED_MODELS:
|
145 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
146 |
issue_link = model_hyperlink(
|
|
|
150 |
model_data[AutoEvalColumn.model.name] = (
|
151 |
f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
152 |
)
|
153 |
+
model_data[AutoEvalColumn.not_flagged.name] = False
|
154 |
else:
|
155 |
+
model_data[AutoEvalColumn.not_flagged.name] = True
|
156 |
|
157 |
|
158 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
src/leaderboard/read_evals.py
CHANGED
@@ -37,7 +37,7 @@ class EvalResult:
|
|
37 |
date: str = "" # submission date of request file
|
38 |
still_on_hub: bool = True
|
39 |
is_merge: bool = False
|
40 |
-
|
41 |
status: str = "FINISHED"
|
42 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
43 |
tags: List[str] = field(default_factory=list)
|
@@ -164,7 +164,7 @@ class EvalResult:
|
|
164 |
self.tags = file_dict.get("tags", [])
|
165 |
|
166 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
167 |
-
self.
|
168 |
|
169 |
|
170 |
def to_dict(self):
|
@@ -185,9 +185,9 @@ class EvalResult:
|
|
185 |
AutoEvalColumn.likes.name: self.likes,
|
186 |
AutoEvalColumn.params.name: self.num_params,
|
187 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
188 |
-
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
189 |
-
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
190 |
-
AutoEvalColumn.
|
191 |
}
|
192 |
|
193 |
for task in Tasks:
|
|
|
37 |
date: str = "" # submission date of request file
|
38 |
still_on_hub: bool = True
|
39 |
is_merge: bool = False
|
40 |
+
not_flagged: bool = False
|
41 |
status: str = "FINISHED"
|
42 |
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
43 |
tags: List[str] = field(default_factory=list)
|
|
|
164 |
self.tags = file_dict.get("tags", [])
|
165 |
|
166 |
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
167 |
+
self.not_flagged = not (any("flagged" in tag for tag in self.tags))
|
168 |
|
169 |
|
170 |
def to_dict(self):
|
|
|
185 |
AutoEvalColumn.likes.name: self.likes,
|
186 |
AutoEvalColumn.params.name: self.num_params,
|
187 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
188 |
+
AutoEvalColumn.merged.name: not( "merge" in self.tags if self.tags else False),
|
189 |
+
AutoEvalColumn.moe.name: not ( ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()) ,
|
190 |
+
AutoEvalColumn.not_flagged.name: self.not_flagged,
|
191 |
}
|
192 |
|
193 |
for task in Tasks:
|
src/submission/check_validity.py
CHANGED
@@ -170,7 +170,6 @@ def get_model_tags(model_card, model: str):
|
|
170 |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
171 |
# Hardcoding because of gating problem
|
172 |
if "Qwen/Qwen1.5-32B" in model:
|
173 |
-
print("HERE NSHJNKJSNJLAS")
|
174 |
is_moe_from_model_card = False
|
175 |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
176 |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
|
|
170 |
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
171 |
# Hardcoding because of gating problem
|
172 |
if "Qwen/Qwen1.5-32B" in model:
|
|
|
173 |
is_moe_from_model_card = False
|
174 |
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
175 |
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
src/tools/plots.py
CHANGED
@@ -34,7 +34,7 @@ def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
|
|
34 |
# We ignore models that are flagged/no longer on the hub/not finished
|
35 |
to_ignore = (
|
36 |
not row["still_on_hub"]
|
37 |
-
or row["
|
38 |
or current_model in FLAGGED_MODELS
|
39 |
or row["status"] != "FINISHED"
|
40 |
)
|
@@ -68,7 +68,6 @@ def create_plot_df(scores_df: dict[str : pd.DataFrame]) -> pd.DataFrame:
|
|
68 |
"""
|
69 |
# Initialize the list to store DataFrames
|
70 |
dfs = []
|
71 |
-
|
72 |
# Iterate over the cols and create a new DataFrame for each column
|
73 |
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
74 |
d = scores_df[col].reset_index(drop=True)
|
|
|
34 |
# We ignore models that are flagged/no longer on the hub/not finished
|
35 |
to_ignore = (
|
36 |
not row["still_on_hub"]
|
37 |
+
or not row["not_flagged"]
|
38 |
or current_model in FLAGGED_MODELS
|
39 |
or row["status"] != "FINISHED"
|
40 |
)
|
|
|
68 |
"""
|
69 |
# Initialize the list to store DataFrames
|
70 |
dfs = []
|
|
|
71 |
# Iterate over the cols and create a new DataFrame for each column
|
72 |
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
73 |
d = scores_df[col].reset_index(drop=True)
|