File size: 5,775 Bytes
6c226f9
46e56df
6c226f9
46e56df
6c226f9
 
c7d9204
6c226f9
 
 
 
46e56df
6c226f9
 
 
46e56df
 
 
 
 
 
 
 
 
7d34dd0
46e56df
 
 
 
 
 
 
 
 
 
 
 
 
6c226f9
 
 
 
 
 
 
 
 
3b293ec
46e56df
 
 
 
6c226f9
46e56df
 
 
 
 
 
 
 
 
 
6c226f9
 
3b293ec
 
46e56df
 
 
 
 
 
 
 
 
 
 
 
 
3b293ec
 
 
46e56df
 
 
 
 
 
 
0c1a3fb
6c226f9
 
 
 
 
46e56df
3c0cd8e
 
 
 
 
46e56df
3c0cd8e
46e56df
7d34dd0
 
6c226f9
 
 
 
 
7097513
53e44d0
46e56df
7097513
6c226f9
 
 
46e56df
6c226f9
7d34dd0
 
 
6c226f9
 
 
 
46e56df
 
 
 
 
 
 
6c226f9
46e56df
 
 
 
7097513
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
# from PIL import Image
import gradio as gr
import yt_dlp as youtube_dl # 用 yt_dlp 代替 pytube
from transformers import pipeline

MODEL_NAME = "openai/whisper-large-v3"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

all_special_ids = pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]

def transcribe(microphone, file_upload, task):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "警告:您已经上传了一个音频文件并使用了麦克录制。 "
            "录制文件将被使用上传的音频将被丢弃。"
        )
    elif (microphone is None) and (file_upload is None):
        return "错误: 您必须使用麦克风录制或上传音频文件"

    file = microphone if microphone is not None else file_upload
    pipe.model.config.forced_decoder_ids = [
        [2, transcribe_token_id if task == "transcribe" else translate_token_id]
    ]
    # text = pipe(file, return_timestamps=True)["text"]
    text = pipe(file, return_timestamps=True)
    # trans to SRT
    text = convert_to_srt(text)
    return warn_output + text

def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def yt_transcribe(yt_url, task):
    # yt = pt.YouTube(yt_url) # 用 yt_dlp 代替 pytube
    ydl = youtube_dl.YoutubeDL({"format": "bestaudio"}) # 创建 yt_dlp 对象
    info = ydl.extract_info(yt_url, download=False) # 提取视频信息
    audio_url = info["formats"][0]["url"] # 获取音频链接
    html_embed_str = _return_yt_html_embed(yt_url)
    # stream = yt.streams.filter(only_audio=True)[0]
    # stream.download(filename="audio.mp3")
    ydl.download([audio_url]) # 下载音频文件
    pipe.model.config.forced_decoder_ids = [
        [2, transcribe_token_id if task == "transcribe" else translate_token_id]
    ]
    text = pipe("audio.mp3", return_timestamps=True)
    # text = pipe("audio.mp3", return_timestamps=True)["text"]
    # trans to SRT
    text = convert_to_srt(text)
    return html_embed_str, text

# Assuming srt format is a sequence of subtitles with index, time range and text
def convert_to_srt(input):
    output = ""
    index = 1
    for chunk in input["chunks"]:
        start, end = chunk["timestamp"]
        text = chunk["text"]
        if end is None:
            end = "None"
        # Convert seconds to hours:minutes:seconds,milliseconds format
        start = format_time(start)
        end = format_time(end)
        output += f"{index}\n{start} --> {end}\n{text}\n\n"
        index += 1
    return output

# Helper function to format time
def format_time(seconds):
    if seconds == "None":
        return seconds
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    seconds = int(seconds % 60)
    milliseconds = int((seconds % 1) * 1000)
    return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"

demo = gr.Blocks()
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
        gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="Audio-to-Text-SRT 自动生成字幕",
    description=(
        "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
        f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的"
        "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”"
    ),
    allow_flagging="never",
)
yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe")
    ],
    outputs=["html", "text"],
    layout="horizontal",
    theme="huggingface",
    title="Audio-to-Text-SRT 自动生成字幕",
    description=(
      "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
        f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的"
        "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”"
    ),
    allow_flagging="never",
)

# # Load the images
# image1 = Image("wechatqrcode.jpg")
# image2 = Image("paypalqrcode.png")

# # Define a function that returns the images and captions
# def display_images():
#     return image1, "WeChat Pay", image2, "PayPal"

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"])
# Create a gradio interface with no inputs and four outputs
# gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch()
demo.launch(enable_queue=True)