new4u commited on
Commit
0c1a3fb
·
verified ·
1 Parent(s): 8115a22

Update app.py

Browse files

text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)

Files changed (1) hide show
  1. app.py +89 -56
app.py CHANGED
@@ -1,10 +1,17 @@
1
  import torch
2
- # from PIL import Image
3
  import gradio as gr
4
- import pytube as pt
5
  from transformers import pipeline
 
 
 
 
6
 
7
  MODEL_NAME = "openai/whisper-large-v3"
 
 
 
8
 
9
  device = 0 if torch.cuda.is_available() else "cpu"
10
 
@@ -16,32 +23,12 @@ pipe = pipeline(
16
  )
17
 
18
 
19
- all_special_ids = pipe.tokenizer.all_special_ids
20
- transcribe_token_id = all_special_ids[-5]
21
- translate_token_id = all_special_ids[-6]
22
-
23
-
24
- def transcribe(microphone, file_upload, task):
25
- warn_output = ""
26
- if (microphone is not None) and (file_upload is not None):
27
- warn_output = (
28
- "警告:您已经上传了一个音频文件并使用了麦克录制。"
29
- "录制文件将被使用上传的音频将被丢弃。\n"
30
- )
31
-
32
- elif (microphone is None) and (file_upload is None):
33
- return "错误: 您必须使用麦克风录制或上传音频文件"
34
 
35
- file = microphone if microphone is not None else file_upload
36
-
37
- pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
38
-
39
- # text = pipe(file, return_timestamps=True)["text"]
40
- text = pipe(file, return_timestamps=True)
41
- #trans to SRT
42
- text= convert_to_srt(text)
43
-
44
- return warn_output + text
45
 
46
 
47
  def _return_yt_html_embed(yt_url):
@@ -52,22 +39,61 @@ def _return_yt_html_embed(yt_url):
52
  )
53
  return HTML_str
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  def yt_transcribe(yt_url, task):
57
- yt = pt.YouTube(yt_url)
58
  html_embed_str = _return_yt_html_embed(yt_url)
59
- stream = yt.streams.filter(only_audio=True)[0]
60
- stream.download(filename="audio.mp3")
61
 
62
- pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
 
 
 
 
63
 
64
- text = pipe("audio.mp3",return_timestamps=True)
65
- # text = pipe("audio.mp3",return_timestamps=True)["text"]
 
 
 
 
 
 
66
  #trans to SRT
67
  text= convert_to_srt(text)
68
-
69
  return html_embed_str, text
70
 
 
 
71
  # Assuming srt format is a sequence of subtitles with index, time range and text
72
  def convert_to_srt(input):
73
  output = ""
@@ -94,23 +120,41 @@ def format_time(seconds):
94
  milliseconds = int((seconds % 1) * 1000)
95
  return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
96
 
 
97
  demo = gr.Blocks()
98
 
99
  mf_transcribe = gr.Interface(
100
  fn=transcribe,
101
  inputs=[
102
  gr.inputs.Audio(source="microphone", type="filepath", optional=True),
103
- gr.inputs.Audio(source="upload", type="filepath", optional=True),
104
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
105
  ],
106
  outputs="text",
107
  layout="horizontal",
108
  theme="huggingface",
109
- title="Audio-to-Text-SRT 自动生成字幕",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  description=(
111
- "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
112
- f" 模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 🤗 Transformers 转换任意长度的"
113
- "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。"
114
  ),
115
  allow_flagging="never",
116
  )
@@ -119,32 +163,21 @@ yt_transcribe = gr.Interface(
119
  fn=yt_transcribe,
120
  inputs=[
121
  gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
122
- gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe")
123
  ],
124
  outputs=["html", "text"],
125
  layout="horizontal",
126
  theme="huggingface",
127
- title="Audio-to-Text-SRT 自动生成字幕",
128
  description=(
129
- "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
130
- f" 模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 🤗 Transformers 转换任意长度的"
131
- "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。"
132
  ),
133
  allow_flagging="never",
134
  )
135
 
136
- # # Load the images
137
- # image1 = Image("wechatqrcode.jpg")
138
- # image2 = Image("paypalqrcode.png")
139
-
140
- # # Define a function that returns the images and captions
141
- # def display_images():
142
- # return image1, "WeChat Pay", image2, "PayPal"
143
-
144
  with demo:
145
- gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"])
146
-
147
- # Create a gradio interface with no inputs and four outputs
148
- # gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch()
149
 
150
  demo.launch(enable_queue=True)
 
1
  import torch
2
+
3
  import gradio as gr
4
+ import yt_dlp as youtube_dl
5
  from transformers import pipeline
6
+ from transformers.pipelines.audio_utils import ffmpeg_read
7
+
8
+ import tempfile
9
+ import os
10
 
11
  MODEL_NAME = "openai/whisper-large-v3"
12
+ BATCH_SIZE = 8
13
+ # FILE_LIMIT_MB = 1000
14
+ # YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
15
 
16
  device = 0 if torch.cuda.is_available() else "cpu"
17
 
 
23
  )
24
 
25
 
26
+ def transcribe(inputs, task):
27
+ if inputs is None:
28
+ raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
+ return text
 
 
 
 
 
 
 
 
32
 
33
 
34
  def _return_yt_html_embed(yt_url):
 
39
  )
40
  return HTML_str
41
 
42
+ def download_yt_audio(yt_url, filename):
43
+ info_loader = youtube_dl.YoutubeDL()
44
+
45
+ try:
46
+ info = info_loader.extract_info(yt_url, download=False)
47
+ except youtube_dl.utils.DownloadError as err:
48
+ raise gr.Error(str(err))
49
+
50
+ file_length = info["duration_string"]
51
+ file_h_m_s = file_length.split(":")
52
+ file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
53
+
54
+ if len(file_h_m_s) == 1:
55
+ file_h_m_s.insert(0, 0)
56
+ if len(file_h_m_s) == 2:
57
+ file_h_m_s.insert(0, 0)
58
+ file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
59
+
60
+ if file_length_s > YT_LENGTH_LIMIT_S:
61
+ yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
62
+ file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
63
+ raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
64
+
65
+ ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
+
67
+ with youtube_dl.YoutubeDL(ydl_opts) as ydl:
68
+ try:
69
+ ydl.download([yt_url])
70
+ except youtube_dl.utils.ExtractorError as err:
71
+ raise gr.Error(str(err))
72
+
73
 
74
  def yt_transcribe(yt_url, task):
 
75
  html_embed_str = _return_yt_html_embed(yt_url)
 
 
76
 
77
+ with tempfile.TemporaryDirectory() as tmpdirname:
78
+ filepath = os.path.join(tmpdirname, "video.mp4")
79
+ download_yt_audio(yt_url, filepath)
80
+ with open(filepath, "rb") as f:
81
+ inputs = f.read()
82
 
83
+ inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
84
+ inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
85
+
86
+
87
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
88
+
89
+ # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
90
+ # text = pipe("audio.mp3",return_timestamps=True)
91
  #trans to SRT
92
  text= convert_to_srt(text)
 
93
  return html_embed_str, text
94
 
95
+
96
+ # SRT prepare
97
  # Assuming srt format is a sequence of subtitles with index, time range and text
98
  def convert_to_srt(input):
99
  output = ""
 
120
  milliseconds = int((seconds % 1) * 1000)
121
  return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
122
 
123
+
124
  demo = gr.Blocks()
125
 
126
  mf_transcribe = gr.Interface(
127
  fn=transcribe,
128
  inputs=[
129
  gr.inputs.Audio(source="microphone", type="filepath", optional=True),
 
130
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
131
  ],
132
  outputs="text",
133
  layout="horizontal",
134
  theme="huggingface",
135
+ title="Whisper Large V3: Transcribe Audio",
136
+ description=(
137
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
138
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
139
+ " of arbitrary length."
140
+ ),
141
+ allow_flagging="never",
142
+ )
143
+
144
+ file_transcribe = gr.Interface(
145
+ fn=transcribe,
146
+ inputs=[
147
+ gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
148
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
149
+ ],
150
+ outputs="text",
151
+ layout="horizontal",
152
+ theme="huggingface",
153
+ title="Whisper Large V3: Transcribe Audio",
154
  description=(
155
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
156
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
157
+ " of arbitrary length."
158
  ),
159
  allow_flagging="never",
160
  )
 
163
  fn=yt_transcribe,
164
  inputs=[
165
  gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
166
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
167
  ],
168
  outputs=["html", "text"],
169
  layout="horizontal",
170
  theme="huggingface",
171
+ title="Whisper Large V3: Transcribe YouTube",
172
  description=(
173
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
174
+ f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
175
+ " arbitrary length."
176
  ),
177
  allow_flagging="never",
178
  )
179
 
 
 
 
 
 
 
 
 
180
  with demo:
181
+ gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
 
 
 
182
 
183
  demo.launch(enable_queue=True)