new4u commited on
Commit
46e56df
1 Parent(s): 37a5daf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -125
app.py CHANGED
@@ -1,35 +1,41 @@
1
  import torch
2
-
3
  import gradio as gr
4
- import yt_dlp as youtube_dl
5
  from transformers import pipeline
6
- from transformers.pipelines.audio_utils import ffmpeg_read
7
-
8
- import tempfile
9
- import os
10
-
11
- MODEL_NAME = "openai/whisper-large-v3"
12
- BATCH_SIZE = 8
13
- FILE_LIMIT_MB = 100000
14
- YT_LENGTH_LIMIT_S = 360000 # limit to 1 hour YouTube files
15
 
 
16
  device = 0 if torch.cuda.is_available() else "cpu"
17
-
18
  pipe = pipeline(
19
  task="automatic-speech-recognition",
20
  model=MODEL_NAME,
21
- chunk_length_s=300,
22
  device=device,
23
  )
24
 
25
-
26
- def transcribe(inputs, task):
27
- if inputs is None:
28
- raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
29
-
30
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
- return text
32
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  def _return_yt_html_embed(yt_url):
35
  video_id = yt_url.split("?v=")[-1]
@@ -39,145 +45,97 @@ def _return_yt_html_embed(yt_url):
39
  )
40
  return HTML_str
41
 
42
- def download_yt_audio(yt_url, filename):
43
- info_loader = youtube_dl.YoutubeDL()
44
-
45
- try:
46
- info = info_loader.extract_info(yt_url, download=False)
47
- except youtube_dl.utils.DownloadError as err:
48
- raise gr.Error(str(err))
49
-
50
- file_length = info["duration_string"]
51
- file_h_m_s = file_length.split(":")
52
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
53
-
54
- if len(file_h_m_s) == 1:
55
- file_h_m_s.insert(0, 0)
56
- if len(file_h_m_s) == 2:
57
- file_h_m_s.insert(0, 0)
58
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
59
-
60
- if file_length_s > YT_LENGTH_LIMIT_S:
61
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
62
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
63
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
64
-
65
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
-
67
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
68
- try:
69
- ydl.download([yt_url])
70
- except youtube_dl.utils.ExtractorError as err:
71
- raise gr.Error(str(err))
72
-
73
-
74
  def yt_transcribe(yt_url, task):
 
 
 
 
75
  html_embed_str = _return_yt_html_embed(yt_url)
76
-
77
- with tempfile.TemporaryDirectory() as tmpdirname:
78
- filepath = os.path.join(tmpdirname, "video.mp4")
79
- download_yt_audio(yt_url, filepath)
80
- with open(filepath, "rb") as f:
81
- inputs = f.read()
82
-
83
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
84
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
85
-
86
-
87
- text = pipe(inputs,return_timestamps=True)
88
- # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language":"zh"}, return_timestamps=True)
89
- # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
90
- # text = pipe("audio.mp3",return_timestamps=True)
91
- #trans to SRT
92
- text= convert_to_srt(text)
93
  return html_embed_str, text
94
 
95
-
96
- # SRT prepare
97
  # Assuming srt format is a sequence of subtitles with index, time range and text
98
  def convert_to_srt(input):
99
- output = ""
100
- index = 1
101
- for chunk in input["chunks"]:
102
- start, end = chunk["timestamp"]
103
- text = chunk["text"]
104
- if end is None:
105
- end = "None"
106
- # Convert seconds to hours:minutes:seconds,milliseconds format
107
- start = format_time(start)
108
- end = format_time(end)
109
- output += f"{index}\n{start} --> {end}\n{text}\n\n"
110
- index += 1
111
- return output
112
 
113
  # Helper function to format time
114
  def format_time(seconds):
115
- if seconds == "None":
116
- return seconds
117
- hours = int(seconds // 3600)
118
- minutes = int((seconds % 3600) // 60)
119
- seconds = int(seconds % 60)
120
- milliseconds = int((seconds % 1) * 1000)
121
- return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
122
-
123
 
124
  demo = gr.Blocks()
125
-
126
  mf_transcribe = gr.Interface(
127
  fn=transcribe,
128
  inputs=[
129
  gr.inputs.Audio(source="microphone", type="filepath", optional=True),
 
130
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
131
  ],
132
  outputs="text",
133
  layout="horizontal",
134
  theme="huggingface",
135
- title="Whisper Large V3: Transcribe Audio",
136
- description=(
137
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
138
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
139
- " of arbitrary length."
140
- ),
141
- allow_flagging="never",
142
- )
143
-
144
- file_transcribe = gr.Interface(
145
- fn=transcribe,
146
- inputs=[
147
- gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
148
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
149
- ],
150
- outputs="text",
151
- layout="horizontal",
152
- theme="huggingface",
153
- title="Whisper Large V3: Transcribe Audio",
154
  description=(
155
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
156
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
157
- " of arbitrary length."
158
  ),
159
  allow_flagging="never",
160
  )
161
-
162
  yt_transcribe = gr.Interface(
163
  fn=yt_transcribe,
164
  inputs=[
165
- gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
166
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
167
  ],
168
  outputs=["html", "text"],
169
  layout="horizontal",
170
  theme="huggingface",
171
- title="Whisper Large V3: Transcribe YouTube",
172
  description=(
173
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
174
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
175
- " arbitrary length."
176
  ),
177
  allow_flagging="never",
178
  )
179
 
180
- with demo:
181
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
 
 
 
 
 
182
 
 
 
 
 
183
  demo.launch(enable_queue=True)
 
1
  import torch
2
+ # from PIL import Image
3
  import gradio as gr
4
+ import yt_dlp as youtube_dl # 用 yt_dlp 代替 pytube
5
  from transformers import pipeline
 
 
 
 
 
 
 
 
 
6
 
7
+ MODEL_NAME = "openai/whisper-large-v2"
8
  device = 0 if torch.cuda.is_available() else "cpu"
 
9
  pipe = pipeline(
10
  task="automatic-speech-recognition",
11
  model=MODEL_NAME,
12
+ chunk_length_s=30,
13
  device=device,
14
  )
15
 
16
+ all_special_ids = pipe.tokenizer.all_special_ids
17
+ transcribe_token_id = all_special_ids[-5]
18
+ translate_token_id = all_special_ids[-6]
19
+
20
+ def transcribe(microphone, file_upload, task):
21
+ warn_output = ""
22
+ if (microphone is not None) and (file_upload is not None):
23
+ warn_output = (
24
+ "警告:您已经上传了一个音频文件并使用了麦克录制。 "
25
+ "录制文件将被使用上传的音频将被丢弃。[^1^][1] \n"
26
+ )
27
+ elif (microphone is None) and (file_upload is None):
28
+ return "错误: 您必须使用麦克风录制或上传音频文件"
29
+
30
+ file = microphone if microphone is not None else file_upload
31
+ pipe.model.config.forced_decoder_ids = [
32
+ [2, transcribe_token_id if task == "transcribe" else translate_token_id]
33
+ ]
34
+ # text = pipe(file, return_timestamps=True)["text"]
35
+ text = pipe(file, return_timestamps=True)
36
+ # trans to SRT
37
+ text = convert_to_srt(text)
38
+ return warn_output + text
39
 
40
  def _return_yt_html_embed(yt_url):
41
  video_id = yt_url.split("?v=")[-1]
 
45
  )
46
  return HTML_str
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  def yt_transcribe(yt_url, task):
49
+ # yt = pt.YouTube(yt_url) # 用 yt_dlp 代替 pytube
50
+ ydl = youtube_dl.YoutubeDL({"format": "bestaudio"}) # 创建 yt_dlp 对象
51
+ info = ydl.extract_info(yt_url, download=False) # 提取视频信息
52
+ audio_url = info["formats"][0]["url"] # 获取音频链接
53
  html_embed_str = _return_yt_html_embed(yt_url)
54
+ # stream = yt.streams.filter(only_audio=True)[0]
55
+ # stream.download(filename="audio.mp3")
56
+ ydl.download([audio_url]) # 下载音频文件
57
+ pipe.model.config.forced_decoder_ids = [
58
+ [2, transcribe_token_id if task == "transcribe" else translate_token_id]
59
+ ]
60
+ text = pipe("audio.mp3", return_timestamps=True)
61
+ # text = pipe("audio.mp3", return_timestamps=True)["text"]
62
+ # trans to SRT
63
+ text = convert_to_srt(text)
 
 
 
 
 
 
 
64
  return html_embed_str, text
65
 
 
 
66
  # Assuming srt format is a sequence of subtitles with index, time range and text
67
  def convert_to_srt(input):
68
+ output = ""
69
+ index = 1
70
+ for chunk in input["chunks"]:
71
+ start, end = chunk["timestamp"]
72
+ text = chunk["text"]
73
+ if end is None:
74
+ end = "None"
75
+ # Convert seconds to hours:minutes:seconds,milliseconds format
76
+ start = format_time(start)
77
+ end = format_time(end)
78
+ output += f"{index}\n{start} --> {end}\n{text}\n\n"
79
+ index += 1
80
+ return output
81
 
82
  # Helper function to format time
83
  def format_time(seconds):
84
+ if seconds == "None":
85
+ return seconds
86
+ hours = int(seconds // 3600)
87
+ minutes = int((seconds % 3600) // 60)
88
+ seconds = int(seconds % 60)
89
+ milliseconds = int((seconds % 1) * 1000)
90
+ return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
 
91
 
92
  demo = gr.Blocks()
 
93
  mf_transcribe = gr.Interface(
94
  fn=transcribe,
95
  inputs=[
96
  gr.inputs.Audio(source="microphone", type="filepath", optional=True),
97
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),
98
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
99
  ],
100
  outputs="text",
101
  layout="horizontal",
102
  theme="huggingface",
103
+ title="Audio-to-Text-SRT 自动生成字幕",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  description=(
105
+ "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
106
+ f" 模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 🤗 Transformers 转换任意长度的"[^2^][2]
107
+ "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。[^3^][3] "
108
  ),
109
  allow_flagging="never",
110
  )
 
111
  yt_transcribe = gr.Interface(
112
  fn=yt_transcribe,
113
  inputs=[
114
+ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),[^4^][4]
115
+ gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe")
116
  ],
117
  outputs=["html", "text"],
118
  layout="horizontal",
119
  theme="huggingface",
120
+ title="Audio-to-Text-SRT 自动生成字幕",
121
  description=(
122
+ "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
123
+ f" 模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 🤗 Transformers 转换任意长度的"[^2^][2]
124
+ "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。 如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。[^3^][3] "
125
  ),
126
  allow_flagging="never",
127
  )
128
 
129
+ # # Load the images
130
+ # image1 = Image("wechatqrcode.jpg")
131
+ # image2 = Image("paypalqrcode.png")
132
+
133
+ # # Define a function that returns the images and captions
134
+ # def display_images():
135
+ # return image1, "WeChat Pay", image2, "PayPal"
136
 
137
+ with demo:
138
+ gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"])
139
+ # Create a gradio interface with no inputs and four outputs
140
+ # gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch()
141
  demo.launch(enable_queue=True)