Spaces:
Runtime error
Runtime error
File size: 1,579 Bytes
040810d 46f4974 e3910d5 5342120 040810d 8b5a1e9 720f8b7 8e7e8df 720f8b7 46f4974 44a5020 5342120 8e7e8df 1f79383 8949e37 1f79383 a61ec70 1f79383 561e110 1f79383 d38a6c6 040810d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
def stylize(content_image, style_image):
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
return tensor_to_image(stylized_image)
paris =[["example_paris.jpeg"], ["example_vangogh.jpeg"]]
aristotle = [["example_aristotle.jpeg"], ["example_dali.jpeg"]]
avatar = [["example_avatar.jpeg"], ["example_kandinsky.jpeg"]]
title = "Fast Neural Style Transfer using TF-Hub"
description = "Demo for neural style transfer using the pretrained Arbitrary Image Stylization model from TensorFlow Hub."
content_input = gr.inputs.Image(label="Content Image", source="upload")
style_input = gr.inputs.Image(label="Style Image", source="upload")
iface = gr.Interface(fn=stylize,
inputs=[content_input, style_input],
outputs="image",
title=title,
description=description,
examples=[content_examples, style_examples])
iface.launch() |