luca-martial commited on
Commit
8b5a1e9
·
1 Parent(s): f1b9169
Files changed (1) hide show
  1. app.py +2 -54
app.py CHANGED
@@ -4,69 +4,17 @@ import tensorflow_hub as hub
4
  import matplotlib.pyplot as plt
5
  import numpy as np
6
 
7
- hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
8
-
9
- def tensor_to_image(tensor):
10
- tensor = tensor*255
11
- tensor = np.array(tensor, dtype=np.uint8)
12
- if np.ndim(tensor)>3:
13
- assert tensor.shape[0] == 1
14
- tensor = tensor[0]
15
- return PIL.Image.fromarray(tensor)
16
-
17
- def load_img(path_to_img):
18
- max_dim = 512
19
- img = tf.io.read_file(path_to_img)
20
- img = tf.image.decode_image(img, channels=3)
21
- img = tf.image.convert_image_dtype(img, tf.float32)
22
-
23
- shape = tf.cast(tf.shape(img)[:-1], tf.float32)
24
- long_dim = max(shape)
25
- scale = max_dim / long_dim
26
-
27
- new_shape = tf.cast(shape * scale, tf.int32)
28
-
29
- img = tf.image.resize(img, new_shape)
30
- img = img[tf.newaxis, :]
31
- return img
32
-
33
 
34
 
35
  def stylize(content_image, style_image):
36
  content_image = content_image.astype(np.float32) / 255.
37
  style_image = style_image.astype(np.float32) / 255.
38
 
39
-
40
- style_image = tf.image.resize(style_image, (256, 256))
41
 
42
- #content_image = load_img(content_path)
43
- #style_image = load_img(style_path)
44
- #stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
45
  return style_image
46
 
47
- #content_image = plt.imread(content_image_path)
48
- #style_image = plt.imread(style_image_path)
49
- #content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
50
- #style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
51
- #style_image = tf.image.resize(style_image, (256, 256))
52
-
53
- #stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
54
- #return tensor_to_image(stylized_image)
55
-
56
-
57
- # Load content and style images (see example in the attached colab).
58
- #content_image = plt.imread(content_image_path)
59
- #style_image = plt.imread(style_image_path)
60
-
61
- # Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]. Example using numpy:
62
- #content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
63
- #style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
64
-
65
- # Optionally resize the images. It is recommended that the style image is about
66
- # 256 pixels (this size was used when training the style transfer network).
67
- # The content image can be any size.
68
- # style_image = tf.image.resize(style_image, (256, 256))
69
-
70
 
71
  iface = gr.Interface(fn=stylize, inputs=["image", "image"], outputs="image")
72
  iface.launch()
 
4
  import matplotlib.pyplot as plt
5
  import numpy as np
6
 
7
+ hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
 
10
  def stylize(content_image, style_image):
11
  content_image = content_image.astype(np.float32) / 255.
12
  style_image = style_image.astype(np.float32) / 255.
13
 
14
+ #style_image = tf.image.resize(style_image, (256, 256))
 
15
 
 
 
 
16
  return style_image
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  iface = gr.Interface(fn=stylize, inputs=["image", "image"], outputs="image")
20
  iface.launch()