luca-martial commited on
Commit
e3910d5
·
1 Parent(s): dc39883
Files changed (1) hide show
  1. app.py +24 -3
app.py CHANGED
@@ -1,14 +1,35 @@
1
  import gradio as gr
2
  import tensorflow as tf
3
  import tensorflow_hub as hub
 
 
4
 
5
  hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
6
 
7
- def stylize(content_path, style_path):
8
- content_image = load_img(content_path)
9
- style_image = load_img(style_path)
 
 
 
 
10
  stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
11
  return tensor_to_image(stylized_image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  iface = gr.Interface(fn=stylize, inputs=["image", "image"], outputs="image")
14
  iface.launch()
 
1
  import gradio as gr
2
  import tensorflow as tf
3
  import tensorflow_hub as hub
4
+ import matplotlib.pylab as plt
5
+ import numpy as np
6
 
7
  hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
8
 
9
+ def stylize(content_image_path, style_image_path):
10
+ content_image = plt.imread(content_image_path)
11
+ style_image = plt.imread(style_image_path)
12
+ content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
13
+ style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
14
+ style_image = tf.image.resize(style_image, (256, 256))
15
+
16
  stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
17
  return tensor_to_image(stylized_image)
18
+
19
+
20
+ # Load content and style images (see example in the attached colab).
21
+ #content_image = plt.imread(content_image_path)
22
+ #style_image = plt.imread(style_image_path)
23
+
24
+ # Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]. Example using numpy:
25
+ #content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
26
+ #style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
27
+
28
+ # Optionally resize the images. It is recommended that the style image is about
29
+ # 256 pixels (this size was used when training the style transfer network).
30
+ # The content image can be any size.
31
+ # style_image = tf.image.resize(style_image, (256, 256))
32
+
33
 
34
  iface = gr.Interface(fn=stylize, inputs=["image", "image"], outputs="image")
35
  iface.launch()