Spaces:
Runtime error
Runtime error
File size: 35,185 Bytes
6eff5e7 4bea31b 05a7bdc 6eff5e7 c2dbf38 7269ffa 580aef7 5ee7598 6eff5e7 580aef7 6eff5e7 c2dbf38 5ee7598 6004e76 6eff5e7 c2dbf38 6eff5e7 e7933f3 6eff5e7 c2dbf38 300debd c2dbf38 7269ffa e7933f3 05a7bdc 6eff5e7 81ca652 7269ffa 81ca652 6eff5e7 300debd 7269ffa 0532283 fd61399 6eff5e7 e7933f3 6eff5e7 a3a8d41 6eff5e7 b5a0311 648fab4 c2dbf38 6eff5e7 81ca652 fd61399 6eff5e7 c2dbf38 fd61399 6eff5e7 e16ae7e 05a7bdc 649e53c 963bf46 7269ffa 05a7bdc 6eff5e7 6004e76 091bb76 3448819 0532283 091bb76 0532283 5ee7598 0532283 c2dbf38 0532283 6004e76 0532283 091bb76 6004e76 0532283 b5a0311 0532283 6004e76 300debd 0532283 091bb76 3448819 fd61399 0532283 c2dbf38 05a7bdc 649e53c 091bb76 b5a0311 c2dbf38 fd61399 c2dbf38 573dc49 c2dbf38 fd61399 c2dbf38 573dc49 c2dbf38 fd61399 091bb76 6eff5e7 fd61399 c2dbf38 fd61399 c2dbf38 fd61399 c2dbf38 091bb76 648fab4 c2dbf38 fd61399 c2dbf38 648fab4 c2dbf38 fd61399 c2dbf38 fd61399 648fab4 c2dbf38 fd61399 c2dbf38 648fab4 c2dbf38 fd61399 c2dbf38 091bb76 648fab4 c2dbf38 648fab4 c2dbf38 648fab4 c2dbf38 648fab4 c2dbf38 fd61399 c2dbf38 300debd c2dbf38 648fab4 fd61399 649e53c 648fab4 649e53c 0532283 961f39c 091bb76 961f39c fd61399 961f39c 6004e76 573dc49 0532283 6eff5e7 649e53c 6eff5e7 963bf46 6eff5e7 6004e76 6eff5e7 b5a0311 6004e76 6eff5e7 6004e76 b5a0311 573dc49 b5a0311 fd61399 6004e76 b5a0311 3448819 fd61399 961f39c fd61399 6004e76 fd61399 6004e76 fd61399 e16ae7e 6004e76 c2dbf38 fd61399 c2dbf38 4068146 b5a0311 6eff5e7 a6756ef 2fad322 961f39c 5ee7598 961f39c e7933f3 2fad322 5ee7598 f582acb 648fab4 fd61399 4068146 fd61399 961f39c cc467f5 4068146 961f39c 4068146 fd61399 6eff5e7 e7933f3 6eff5e7 648fab4 6eff5e7 648fab4 6eff5e7 e7933f3 fd61399 e7933f3 fd61399 e7933f3 6eff5e7 300debd 649e53c e7933f3 c2dbf38 091bb76 fd61399 c2dbf38 fd61399 091bb76 c2dbf38 fd61399 c2dbf38 fd61399 c2dbf38 fd61399 c2dbf38 fd61399 c2dbf38 091bb76 fd61399 963bf46 648fab4 961f39c 648fab4 961f39c 6004e76 e16ae7e fd61399 e16ae7e 6eff5e7 961f39c 6eff5e7 961f39c 6004e76 961f39c 6004e76 961f39c 6004e76 961f39c fd61399 573dc49 961f39c e7933f3 963bf46 c2dbf38 fd61399 c2dbf38 649e53c 6eff5e7 e7933f3 6eff5e7 b5a0311 c2dbf38 b5a0311 6eff5e7 c2dbf38 7269ffa 091bb76 648fab4 6eff5e7 648fab4 e16ae7e 6eff5e7 e16ae7e 961f39c fd61399 961f39c 6004e76 6eff5e7 091bb76 6eff5e7 963bf46 6eff5e7 573dc49 0532283 b5a0311 6004e76 b5a0311 0532283 6eff5e7 e16ae7e 963bf46 e16ae7e b5a0311 573dc49 6004e76 b5a0311 e16ae7e 0532283 fd61399 6004e76 c2dbf38 6004e76 0532283 e16ae7e 4f8ef7b c2dbf38 573dc49 c2dbf38 860bafc d3d8e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import pickle
import nltk
import time
from input_format import *
from score import *
nltk.download('punkt') # tokenizer
nltk.download('averaged_perceptron_tagger') # postagger
## load document scoring model
#torch.cuda.is_available = lambda : False # uncomment to test with CPU only
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#pretrained_model = 'allenai/specter'
pretrained_model = 'allenai/specter2'
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
doc_model = AutoModel.from_pretrained(pretrained_model)
doc_model.to(device)
## load sentence model
sent_model = doc_model # have the same model for document and sentence level
# OR specify different model for sentence level
#sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
#sent_model.to(device)
NUM_PAPERS_SHOW = 5 # max number of top papers to show from the reviewer upfront
NUM_PAIRS_SHOW = 5 # max number of top sentence pairs to show
def get_similar_paper(
title_input,
abstract_text_input,
author_id_input,
top_paper_slider,
top_pair_slider,
results={}, # this state variable will be updated and returned
):
progress = gr.Progress()
if title_input == None:
title_input = '' # if no title is given, just focus on abstract.
print('retrieving similar papers...')
start = time.time()
input_sentences = sent_tokenize(abstract_text_input)
# Get author papers from id
#progress(0.1, desc="Retrieving reviewer papers ...")
name, papers = get_text_from_author_id(author_id_input)
# Compute Doc-level affinity scores for the Papers
# print('computing document scores...')
#progress(0.5, desc="Computing document scores...")
# TODO detect duplicate papers?
titles, abstracts, paper_urls, doc_scores, paper_years, paper_citations = compute_document_score(
doc_model,
tokenizer,
title_input,
abstract_text_input,
papers,
batch=10
)
results = {
'name': name,
'author_url': author_id_input,
'titles': titles,
'abstracts': abstracts,
'urls': paper_urls,
'doc_scores': doc_scores,
'years': paper_years,
'citations': paper_citations,
}
# Select top 10 papers to show
titles = titles[:10]
abstracts = abstracts[:10]
doc_scores = doc_scores[:10]
paper_urls = paper_urls[:10]
paper_years = paper_years[:10]
paper_citations = paper_citations[:10]
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
end = time.time()
retrieval_time = end - start
print('paper retrieval complete in [%0.2f] seconds'%(retrieval_time))
progress(0.9, desc="Obtaining relevant information from the papers...")
print('obtaining highlights..')
start = time.time()
input_sentences = sent_tokenize(abstract_text_input)
num_input_sents = len(input_sentences)
for aa, (tt, ab, ds, url) in enumerate(zip(titles, abstracts, doc_scores, paper_urls)):
# Compute sent-level and phrase-level affinity scores for each papers
sent_ids, sent_scores, info, top_pairs_info = get_highlight_info(
sent_model,
tokenizer,
abstract_text_input,
ab,
K=None,
top_pair_num=10, # top ten sentence pairs at max to show upfront
)
num_cand_sents = sent_ids.shape[1]
# get scores for each word in the format for Gradio Interpretation component
word_scores = dict()
for i in range(num_input_sents):
word_scores[str(i)] = dict()
for j in range(1, num_cand_sents+1):
ww, ss = remove_spaces(info['all_words'], info[i][j]['scores'])
word_scores[str(i)][str(j)] = {
"original": ab,
"interpretation": list(zip(ww, ss))
}
results[display_title[aa]] = {
'title': tt,
'abstract': ab,
'num_cand_sents': num_cand_sents,
'doc_score': '%0.3f'%ds,
'source_sentences': input_sentences,
'highlight': word_scores,
'top_pairs': top_pairs_info,
'url': url,
'year': paper_years[aa],
'citations': paper_citations[aa],
}
end = time.time()
highlight_time = end - start
print('done in [%0.2f] seconds'%(highlight_time))
## Set up output elements
## Components for Initial Part
result1_desc_value = """
<h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
For each paper, top %d sentence pairs (one from the submission on the left, one from the paper on the right) with the highest relevance scores are shown.
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
"""%(int(top_paper_slider), author_id_input, results['name'], int(top_pair_slider))
out1 = [
gr.update(visible=True), # Explore more button
gr.update(value=result1_desc_value, visible=True), # result 1 description
gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True), # search status
gr.update(visible=True), # top paper slider
gr.update(visible=True) # top pair slider
]
### Components for Results in Initial Part
top_papers_show = int(top_paper_slider) # number of top papers to show upfront
top_num_info_show = int(top_pair_slider) # number of sentence pairs from each paper to show upfront
output = setup_outputs(results, top_papers_show, top_num_info_show)
out2 = []
for x in output:
out2 += x
### Components for Explore More Section
# list of top papers, sentences to select from, paper_title, affinity
title = results[display_title[0]]['title'] # set default title as the top paper
url = results[display_title[0]]['url']
aff_score = results[display_title[0]]['doc_score']
title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
aff_score_out = '##### Affinity Score: %s'%aff_score
result2_desc_value = """
##### Click a paper by %s (left, sorted by affinity scores), and a sentence from the submission abstract (center), to see which parts of the paper's abstract are relevant (right).
"""%results['name']
out3 = [
gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
gr.update(choices=input_sentences, value=input_sentences[0], interactive=True), # submission sentences
gr.update(value=title_out), # paper_title
gr.update(value=aff_score_out), # affinity
gr.update(value=result2_desc_value), # result 2 description (show more section)
gr.update(value=2, maximum=len(sent_tokenize(abstracts[0]))), # highlight slider to control
]
torch.cuda.empty_cache()
## Return by adding the State variable info
return out1 + out2 + out3 + [results]
def setup_outputs(info, top_papers_show, top_num_info_show):
titles = info['titles']
doc_scores = info['doc_scores']
paper_urls = info['urls']
paper_years = info['years']
paper_citations = info['citations']
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(info['titles'], info['doc_scores'])]
title = []
affinity = []
citation_count = []
sent_pair_score = []
sent_text_query = []
sent_text_candidate = []
sent_hl_query = []
sent_hl_candidate = []
demarc_lines = []
for i in range(top_papers_show):
if i == 0:
title.append(
gr.update(value="""<a href="%s" target="_blank"><h4>%s (%s)</h4></a>"""%(paper_urls[i], titles[i], str(paper_years[i])), visible=True)
)
affinity.append(
gr.update(value="""#### Affinity Score: %0.3f
<div class="help-tip">
<p>Measures how similar the paper's abstract is to the submission abstract.</p>
</div>
"""%doc_scores[i], visible=True) # document affinity
)
citation_count.append(
gr.update(value="""#### Citation Count: %d"""%paper_citations[i], visible=True) # document affinity
)
else:
title.append(
gr.update(value="""<a href="%s" target="_blank"><h4>%s (%s)</h4></a>"""%(paper_urls[i], titles[i], str(paper_years[i])), visible=True)
)
affinity.append(
gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
)
citation_count.append(
gr.update(value="""#### Citation Count: %d"""%paper_citations[i], visible=True) # document affinity
)
demarc_lines.append(gr.Markdown.update(visible=True))
# fill in the rest as
tp = info[display_title[i]]['top_pairs']
for j in range(top_num_info_show):
if i == 0 and j == 0:
# for the first entry add help tip
sent_pair_score.append(
gr.update(value="""Sentence Relevance:\n%0.3f
<div class="help-tip">
<p>Measures how similar the sentence pairs are.</p>
</div>"""%tp[j]['score'], visible=True)
)
else:
sent_pair_score.append(
gr.Textbox.update(value='Sentence Relevance:\n%0.3f'%tp[j]['score'], visible=True)
)
sent_text_query.append(gr.Textbox.update(tp[j]['query']['original']))
sent_text_candidate.append(gr.Textbox.update(tp[j]['candidate']['original']))
sent_hl_query.append(tp[j]['query'])
sent_hl_candidate.append(tp[j]['candidate'])
#row2.append(gr.update(visible=True))
sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
sent_text_candidate += [gr.Textbox.update(value='', visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
sent_hl_query += [None] * (NUM_PAIRS_SHOW - top_num_info_show)
sent_hl_candidate += [None] * (NUM_PAIRS_SHOW - top_num_info_show)
# mark others not visible
title += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
affinity += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
citation_count += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
demarc_lines += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
sent_text_candidate += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
sent_hl_query += [None] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
sent_hl_candidate += [None] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
assert(len(title) == NUM_PAPERS_SHOW)
assert(len(affinity) == NUM_PAPERS_SHOW)
assert(len(sent_pair_score) == NUM_PAIRS_SHOW * NUM_PAPERS_SHOW)
return title, affinity, citation_count, demarc_lines, sent_pair_score, sent_text_query, sent_text_candidate, sent_hl_query, sent_hl_candidate
def show_more(info):
# show the interactive part of the app
return (
gr.update(visible=True), # description
gr.update(visible=True), # set of papers
gr.update(visible=True), # submission sentences
gr.update(visible=True), # title row
gr.update(visible=True), # affinity row
gr.update(visible=True), # citation row
gr.update(visible=True), # highlight legend
gr.update(visible=True), # highlight slider
gr.update(visible=True), # highlight abstract
)
def show_status():
# show search status field when search button is clicked
return gr.update(visible=True)
def update_name(author_id_input):
# update the name of the author based on the id input
name, _ = get_text_from_author_id(author_id_input)
return gr.update(value=name)
def change_sentence(
selected_papers_radio,
source_sent_choice,
highlight_slider,
info={}
):
# change the output highlight based on the sentence selected from the submission
if len(info.keys()) != 0: # if the info is not empty
source_sents = info[selected_papers_radio]['source_sentences']
highlights = info[selected_papers_radio]['highlight']
idx = source_sents.index(source_sent_choice)
return highlights[str(idx)][str(highlight_slider)]
else:
return
def change_paper(
selected_papers_radio,
source_sent_choice,
highlight_slider,
info={}
):
if len(info.keys()) != 0: # if the info is not empty
source_sents = info[selected_papers_radio]['source_sentences']
title = info[selected_papers_radio]['title']
year = info[selected_papers_radio]['year']
citation_count = info[selected_papers_radio]['citations']
num_sents = info[selected_papers_radio]['num_cand_sents']
abstract = info[selected_papers_radio]['abstract']
aff_score = info[selected_papers_radio]['doc_score']
highlights = info[selected_papers_radio]['highlight']
url = info[selected_papers_radio]['url']
title_out = """<a href="%s" target="_blank"><h5>%s (%s)</h5></a>"""%(url, title, str(year))
aff_score_out = '##### Affinity Score: %s'%aff_score
citation_count_out = '##### Citation Count: %s'%citation_count
idx = source_sents.index(source_sent_choice)
if highlight_slider <= num_sents:
return title_out, abstract, aff_score_out, citation_count_out, highlights[str(idx)][str(highlight_slider)], gr.update(value=highlight_slider, maximum=num_sents)
else: # if the slider is set to more than the current number of sentences, show the max number of highlights
return title_out, abstract, aff_score_out, citation_count_out, highlights[str(idx)][str(num_sents)], gr.update(value=num_sents, maximum=num_sents)
else:
return
def change_num_highlight(
selected_papers_radio,
source_sent_choice,
highlight_slider,
info={}
):
if len(info.keys()) != 0: # if the info is not empty
source_sents = info[selected_papers_radio]['source_sentences']
highlights = info[selected_papers_radio]['highlight']
idx = source_sents.index(source_sent_choice)
return highlights[str(idx)][str(highlight_slider)]
else:
return
def change_top_output(top_paper_slider, top_pair_slider, info={}):
top_papers_show = int(top_paper_slider)
top_num_info_show = int(top_pair_slider)
result1_desc_value = """
<h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
For each paper, top %d sentence pairs (one from the submission on the left, one from the paper on the right) with the highest relevance scores are shown.
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
"""%(int(top_paper_slider), info['author_url'], info['name'], int(top_pair_slider))
if len(info.keys()) != 0:
tmp = setup_outputs(info, top_papers_show, top_num_info_show)
x = []
for t in tmp:
x += t
return x + [gr.update(value=result1_desc_value)]
else:
return
with gr.Blocks(css='style.css') as demo:
info = gr.State({}) # cached search results as a State variable shared throughout
# Text description about the app and disclaimer
### TEXT Description
# General instruction
general_instruction = """
# R2P2: An Assistance Tool for Reviewer-Paper Matching in Peer Review
#### Who is it for?
It is for meta-reviewers, area chairs, program chairs, or anyone who oversees the submission-reviewer matching process in peer review for academic conferences, journals, and grants.
<center><img src="file/tool-img.jpeg" width="70%" alt="general workflow"></center>
#### How does it help?
A typical meta-reviewer workflow lacks supportive information on **what makes the pre-selected candidate reviewers a good fit** for the submission. Only affinity scores between the reviewer and the paper are shown, without additional details on what makes them similar/different.
R2P2 provides more information about each reviewer. Given a paper and a reviewer, it searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
"""
# More details (video, addendum)
more_details_instruction = """Check out <a href="https://drive.google.com/file/d/1Ex_-cOplBitO7riNGliecFc8H3chXUN-/view?usp=share_link", target="_blank">this video</a> for an overview of what R2P2 is and <a href="https://drive.google.com/file/d/1C_fadFNdJkbrgeaoeoqeJdVCvg5iJi5V/view?usp=share_link", target="_blank">this video</a> for how to use it. You can find more details <a href="file/details.html", target="_blank">here</a>, along with our privacy policy and disclaimer."""
gr.Markdown(general_instruction)
gr.HTML(more_details_instruction)
gr.Markdown("""---""")
# Add main example
example_title ="The Toronto Paper Matching System: An automated paper-reviewer assignment system"
example_submission = """One of the most important tasks of conference organizers is the assignment of papers to reviewers. Reviewers' assessments of papers is a crucial step in determining the conference program, and in a certain sense to shape the direction of a field. However this is not a simple task: large conferences typically have to assign hundreds of papers to hundreds of reviewers, and time constraints make the task impossible for one person to accomplish. Furthermore other constraints, such as reviewer load have to be taken into account, preventing the process from being completely distributed. We built the first version of a system to suggest reviewer assignments for the NIPS 2010 conference, followed, in 2012, by a release that better integrated our system with Microsoft's popular Conference Management Toolkit (CMT). Since then our system has been widely adopted by the leading conferences in both the machine learning and computer vision communities. This paper provides an overview of the system, a summary of learning models and methods of evaluation that we have been using, as well as some of the recent progress and open issues."""
example_reviewer = "https://www.semanticscholar.org/author/Nihar-B.-Shah/1737249"
## Add other examples for the task
# match 1
# example1_title = "VoroCNN: Deep convolutional neural network built on 3D Voronoi tessellation of protein structures"
# example1_submission = """Effective use of evolutionary information has recently led to tremendous progress in computational prediction of three-dimensional (3D) structures of proteins and their complexes. Despite the progress, the accuracy of predicted structures tends to vary considerably from case to case. Since the utility of computational models depends on their accuracy, reliable estimates of deviation between predicted and native structures are of utmost importance. Results For the first time we present a deep convolutional neural network (CNN) constructed on a Voronoi tessellation of 3D molecular structures. Despite the irregular data domain, our data representation allows to efficiently introduce both convolution and pooling operations of the network. We trained our model, called VoroCNN, to predict local qualities of 3D protein folds. The prediction results are competitive to the state of the art and superior to the previous 3D CNN architectures built for the same task. We also discuss practical applications of VoroCNN, for example, in the recognition of protein binding interfaces. Availability The model, data, and evaluation tests are available at https://team.inria.fr/nano-d/software/vorocnn/. Contact [email protected], [email protected]"""
# example1_reviewer = "https://www.semanticscholar.org/author/2025052385"
# # match 2
# example2_title = "Model-based Policy Optimization with Unsupervised Model Adaptation"
# example2_submission = """Model-based reinforcement learning methods learn a dynamics model with real data sampled from the environment and leverage it to generate simulated data to derive an agent. However, due to the potential distribution mismatch between simulated data and real data, this could lead to degraded performance. Despite much effort being devoted to reducing this distribution mismatch, existing methods fail to solve it explicitly. In this paper, we investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization. To begin with, we first derive a lower bound of the expected return, which naturally inspires a bound maximization algorithm by aligning the simulated and real data distributions. To this end, we propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation to minimize the integral probability metric (IPM) between feature distributions from real and simulated data. Instantiating our framework with Wasserstein-1 distance gives a practical model-based approach. Empirically, our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks."""
# example2_reviewer = "https://www.semanticscholar.org/author/144974941"
# # match 3
# example3_title = "Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance"
# example3_submission = """The Wasserstein distance between two probability measures on a metric space is a measure of closeness with applications in statistics, probability, and machine learning. In this work, we consider the fundamental question of how quickly the empirical measure obtained from $n$ independent samples from $\mu$ approaches $\mu$ in the Wasserstein distance of any order. We prove sharp asymptotic and finite-sample results for this rate of convergence for general measures on general compact metric spaces. Our finite-sample results show the existence of multi-scale behavior, where measures can exhibit radically different rates of convergence as $n$ grows."""
# example3_reviewer = "https://www.semanticscholar.org/author/27911143"
# # match 4
# example4_title = "Deep Neural Networks for Estimation and Inference: Application to Causal Effects and Other Semiparametric Estimands"
# example4_submission = """We study deep neural networks and their use in semiparametric inference. We prove valid inference after first-step estimation with deep learning, a result new to the literature. We provide new rates of convergence for deep feedforward neural nets and, because our rates are sufficiently fast (in some cases minimax optimal), obtain valid semiparametric inference. Our estimation rates and semiparametric inference results handle the current standard architecture: fully connected feedforward neural networks (multi-layer perceptrons), with the now-common rectified linear unit activation function and a depth explicitly diverging with the sample size. We discuss other architectures as well, including fixed-width, very deep networks. We establish nonasymptotic bounds for these deep nets for nonparametric regression, covering the standard least squares and logistic losses in particular. We then apply our theory to develop semiparametric inference, focusing on treatment effects, expected welfare, and decomposition effects for concreteness. Inference in many other semiparametric contexts can be readily obtained. We demonstrate the effectiveness of deep learning with a Monte Carlo analysis and an empirical application to direct mail marketing."""
# example4_reviewer = "https://www.semanticscholar.org/author/3364789"
### INPUT
with gr.Row() as input_row:
with gr.Column(scale=3):
with gr.Row():
title_input = gr.Textbox(label='Submission Title', info='Paste in the title of the submission.')
with gr.Row():
abstract_text_input = gr.Textbox(label='Submission Abstract', info='Paste in the abstract of the submission.')
with gr.Column(scale=2):
with gr.Row():
author_id_input = gr.Textbox(label='Reviewer Profile Link (Semantic Scholar)', info="Paste in the reviewer's Semantic Scholar link")
with gr.Row():
name = gr.Textbox(label='Confirm Reviewer Name', info='This will be automatically updated based on the reviewer profile link above', interactive=False)
author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
gr.Examples(
examples=[
[example_title, example_submission, example_reviewer],
# [example1_title, example1_submission, example1_reviewer],
# [example2_title, example2_submission, example2_reviewer],
# [example3_title, example3_submission, example3_reviewer],
# [example4_title, example4_submission, example4_reviewer],
],
inputs=[title_input, abstract_text_input, author_id_input],
cache_examples=False,
label="Try out the following example input. Click on a row to fill in the input fields accordingly."
)
with gr.Row():
compute_btn = gr.Button('What Makes This a Good Match?')
with gr.Row():
search_status = gr.Textbox(label='Search Status', interactive=False, visible=False)
### OVERVIEW RESULTS
# Paper title, score, and top-ranking sentence pairs
# a knob for controlling the number of output displayed
with gr.Row():
with gr.Column(scale=3):
result1_desc = gr.Markdown(value='', visible=False)
with gr.Column(scale=2):
# with gr.Row():
top_paper_slider = gr.Slider(label='Number of papers to show', value=3, minimum=3, step=1, maximum=NUM_PAPERS_SHOW, visible=False)
with gr.Column(scale=2):
#with gr.Row():
top_pair_slider = gr.Slider(label='Number of sentence pairs to show', value=2, minimum=2, step=1, maximum=NUM_PAIRS_SHOW, visible=False)
paper_title_up = []
paper_affinity_up = []
citation_count = []
sent_pair_score = []
sent_text_query = []
sent_text_candidate = []
sent_hl_query = []
sent_hl_candidate = []
demarc_lines = []
row_elems1 = []
row_elems2 = []
for i in range(NUM_PAPERS_SHOW):
with gr.Row():
with gr.Column(scale=3):
tt = gr.Markdown(value='', visible=False)
paper_title_up.append(tt)
with gr.Column(scale=1):
cc = gr.Markdown(value='', visible=False)
citation_count.append(cc)
with gr.Column(scale=1):
aff = gr.Markdown(value='', visible=False)
paper_affinity_up.append(aff)
for j in range(NUM_PAIRS_SHOW):
with gr.Row():
with gr.Column(scale=1):
sps = gr.Markdown(value='', visible=False)
sent_pair_score.append(sps)
with gr.Column(scale=5):
#stq = gr.Textbox(label='Sentence from Submission', visible=False)
stq = gr.Textbox(label='', visible=False)
shq = gr.components.Interpretation(stq, visible=False)
sent_text_query.append(stq)
sent_hl_query.append(shq)
with gr.Column(scale=5):
#stc = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
stc = gr.Textbox(label="", visible=False)
shc = gr.components.Interpretation(stc, visible=False)
sent_text_candidate.append(stc)
sent_hl_candidate.append(shc)
with gr.Row():
dml = gr.Markdown("""---""", visible=False)
demarc_lines.append(dml)
## Show more button
with gr.Row():
see_more_rel_btn = gr.Button('Not Enough Information? Explore More', visible=False)
### PAPER INFORMATION
# Description for Explore More Section
with gr.Row():
result2_desc = gr.Markdown(value='', visible=False)
# Highlight description
hl_desc = """
<font size="2">**<span style="color:black;background-color:#DB7262;">Red</span>**: sentences simiar to the selected sentence from submission. Darker = more similar.</font>
<font size="2">**<span style="color:black;background-color:#65B5E3;">Blue</span>**: phrases that appear in both sentences.</font>
"""
#---"""
# show multiple papers in radio check box to select from
paper_abstract = gr.Textbox(label='', interactive=False, visible=False)
with gr.Row():
with gr.Column(scale=1):
selected_papers_radio = gr.Radio(
choices=[], # will be udpated with the button click
visible=False, # also will be updated with the button click
label='Top Relevant Papers from the Reviewer'
)
with gr.Column(scale=2):
# sentences from submission
source_sentences = gr.Radio(
choices=[],
visible=False,
label='Sentences from Submission Abstract',
)
with gr.Column(scale=3):
# selected paper and highlight
with gr.Row():
# slider for highlight amount
highlight_slider = gr.Slider(
label='Number of Highlighted Sentences',
minimum=1,
maximum=15,
step=1,
value=2,
visible=False
)
with gr.Row():
# highlight legend
highlight_legend = gr.Markdown(value=hl_desc, visible=False)
with gr.Row(visible=False) as title_row:
# selected paper title
paper_title = gr.Markdown(value='')
with gr.Row(visible=False) as aff_row:
# selected paper's affinity score
affinity = gr.Markdown(value='')
with gr.Row(visible=False) as cite_row:
# selected paper's citation count
citation = gr.Markdown(value='')
with gr.Row(visible=False) as hl_row:
# highlighted text from paper
highlight = gr.components.Interpretation(paper_abstract)
### EVENT LISTENERS
# components to work with
init_components = [
see_more_rel_btn, # explore more button
result1_desc, # description for first results
search_status, # search status
top_paper_slider,
top_pair_slider
]
init_result_components = \
paper_title_up + paper_affinity_up + citation_count + demarc_lines + sent_pair_score + \
sent_text_query + sent_text_candidate + sent_hl_query + sent_hl_candidate
explore_more_components = [
selected_papers_radio, # list of papers for show more section
source_sentences, # list of sentences for show more section
paper_title, # paper title for show more section
affinity, # affinity for show more section
result2_desc, # description for explore more
highlight_slider, # highlight slider
]
compute_btn.click(
fn=show_status,
inputs=[],
outputs=search_status
)
compute_btn.click(
fn=get_similar_paper,
inputs=[
title_input,
abstract_text_input,
author_id_input,
top_paper_slider,
top_pair_slider,
info
],
outputs=init_components + init_result_components + explore_more_components + [info],
show_progress=True,
scroll_to_output=True
)
# Get more info (move to more interactive portion)
see_more_rel_btn.click(
fn=show_more,
inputs=info,
outputs=[
result2_desc,
selected_papers_radio,
source_sentences,
title_row,
aff_row,
cite_row,
highlight_legend,
highlight_slider,
hl_row,
]
)
# change highlight based on selected sentences from submission
source_sentences.change(
fn=change_sentence,
inputs=[
selected_papers_radio,
source_sentences,
highlight_slider,
info
],
outputs=highlight
)
# change paper to show based on selected papers
selected_papers_radio.change(
fn=change_paper,
inputs=[
selected_papers_radio,
source_sentences,
highlight_slider,
info,
],
outputs= [
paper_title,
paper_abstract,
affinity,
citation,
highlight,
highlight_slider
]
)
# change number of higlights to show
highlight_slider.change(
fn=change_num_highlight,
inputs=[
selected_papers_radio,
source_sentences,
highlight_slider,
info
],
outputs=[
highlight
]
)
# change number of top papers to show initially
top_paper_slider.change(
fn=change_top_output,
inputs=[
top_paper_slider,
top_pair_slider,
info
],
outputs=init_result_components+[result1_desc]
)
# change number of top sentence pairs to show initially
top_pair_slider.change(
fn=change_top_output,
inputs=[
top_paper_slider,
top_pair_slider,
info
],
outputs=init_result_components+[result1_desc]
)
if __name__ == "__main__":
demo.queue().launch() # add ?__theme=light to force light mode
#demo.queue().launch(share=True) # add ?__theme=light to force light mode |