Spaces:
Runtime error
Runtime error
adding time info
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import pickle
|
|
6 |
import nltk
|
7 |
nltk.download('punkt') # tokenizer
|
8 |
nltk.download('averaged_perceptron_tagger') # postagger
|
|
|
9 |
|
10 |
from input_format import *
|
11 |
from score import *
|
@@ -28,7 +29,8 @@ def get_similar_paper(
|
|
28 |
author_id_input,
|
29 |
num_papers_show=10
|
30 |
):
|
31 |
-
print('retrieving similar papers')
|
|
|
32 |
input_sentences = sent_tokenize(abstract_text_input)
|
33 |
|
34 |
# TODO handle pdf file input
|
@@ -41,7 +43,7 @@ def get_similar_paper(
|
|
41 |
name, papers = get_text_from_author_id(author_id_input)
|
42 |
|
43 |
# Compute Doc-level affinity scores for the Papers
|
44 |
-
print('computing scores')
|
45 |
titles, abstracts, doc_scores = compute_document_score(
|
46 |
doc_model,
|
47 |
tokenizer,
|
@@ -63,7 +65,8 @@ def get_similar_paper(
|
|
63 |
doc_scores = doc_scores[:num_papers_show]
|
64 |
|
65 |
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
|
66 |
-
|
|
|
67 |
|
68 |
return (
|
69 |
gr.update(choices=display_title, interactive=True, visible=True), # set of papers
|
@@ -79,7 +82,8 @@ def get_highlights(
|
|
79 |
abstract,
|
80 |
K=2
|
81 |
):
|
82 |
-
print('obtaining highlights')
|
|
|
83 |
# Compute sent-level and phrase-level affinity scores for each papers
|
84 |
sent_ids, sent_scores, info = get_highlight_info(
|
85 |
sent_model,
|
@@ -105,7 +109,8 @@ def get_highlights(
|
|
105 |
'highlight': word_scores
|
106 |
}
|
107 |
pickle.dump(tmp, open('highlight_info.pkl', 'wb'))
|
108 |
-
|
|
|
109 |
|
110 |
# update the visibility of radio choices
|
111 |
return gr.update(visible=True)
|
|
|
6 |
import nltk
|
7 |
nltk.download('punkt') # tokenizer
|
8 |
nltk.download('averaged_perceptron_tagger') # postagger
|
9 |
+
import time
|
10 |
|
11 |
from input_format import *
|
12 |
from score import *
|
|
|
29 |
author_id_input,
|
30 |
num_papers_show=10
|
31 |
):
|
32 |
+
print('retrieving similar papers...')
|
33 |
+
start = time.time()
|
34 |
input_sentences = sent_tokenize(abstract_text_input)
|
35 |
|
36 |
# TODO handle pdf file input
|
|
|
43 |
name, papers = get_text_from_author_id(author_id_input)
|
44 |
|
45 |
# Compute Doc-level affinity scores for the Papers
|
46 |
+
print('computing scores...')
|
47 |
titles, abstracts, doc_scores = compute_document_score(
|
48 |
doc_model,
|
49 |
tokenizer,
|
|
|
65 |
doc_scores = doc_scores[:num_papers_show]
|
66 |
|
67 |
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
|
68 |
+
end = time.time()
|
69 |
+
print('retrieval complete in [%0.2f] seconds'%(end - start))
|
70 |
|
71 |
return (
|
72 |
gr.update(choices=display_title, interactive=True, visible=True), # set of papers
|
|
|
82 |
abstract,
|
83 |
K=2
|
84 |
):
|
85 |
+
print('obtaining highlights..')
|
86 |
+
start = time.time()
|
87 |
# Compute sent-level and phrase-level affinity scores for each papers
|
88 |
sent_ids, sent_scores, info = get_highlight_info(
|
89 |
sent_model,
|
|
|
109 |
'highlight': word_scores
|
110 |
}
|
111 |
pickle.dump(tmp, open('highlight_info.pkl', 'wb'))
|
112 |
+
end = time.time()
|
113 |
+
print('done in [%0.2f] seconds'%(end - start))
|
114 |
|
115 |
# update the visibility of radio choices
|
116 |
return gr.update(visible=True)
|