jskim commited on
Commit
05a7bdc
·
1 Parent(s): 963bf46

adding time info

Browse files
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -6,6 +6,7 @@ import pickle
6
  import nltk
7
  nltk.download('punkt') # tokenizer
8
  nltk.download('averaged_perceptron_tagger') # postagger
 
9
 
10
  from input_format import *
11
  from score import *
@@ -28,7 +29,8 @@ def get_similar_paper(
28
  author_id_input,
29
  num_papers_show=10
30
  ):
31
- print('retrieving similar papers')
 
32
  input_sentences = sent_tokenize(abstract_text_input)
33
 
34
  # TODO handle pdf file input
@@ -41,7 +43,7 @@ def get_similar_paper(
41
  name, papers = get_text_from_author_id(author_id_input)
42
 
43
  # Compute Doc-level affinity scores for the Papers
44
- print('computing scores')
45
  titles, abstracts, doc_scores = compute_document_score(
46
  doc_model,
47
  tokenizer,
@@ -63,7 +65,8 @@ def get_similar_paper(
63
  doc_scores = doc_scores[:num_papers_show]
64
 
65
  display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
66
- print('retrieval done')
 
67
 
68
  return (
69
  gr.update(choices=display_title, interactive=True, visible=True), # set of papers
@@ -79,7 +82,8 @@ def get_highlights(
79
  abstract,
80
  K=2
81
  ):
82
- print('obtaining highlights')
 
83
  # Compute sent-level and phrase-level affinity scores for each papers
84
  sent_ids, sent_scores, info = get_highlight_info(
85
  sent_model,
@@ -105,7 +109,8 @@ def get_highlights(
105
  'highlight': word_scores
106
  }
107
  pickle.dump(tmp, open('highlight_info.pkl', 'wb'))
108
- print('done')
 
109
 
110
  # update the visibility of radio choices
111
  return gr.update(visible=True)
 
6
  import nltk
7
  nltk.download('punkt') # tokenizer
8
  nltk.download('averaged_perceptron_tagger') # postagger
9
+ import time
10
 
11
  from input_format import *
12
  from score import *
 
29
  author_id_input,
30
  num_papers_show=10
31
  ):
32
+ print('retrieving similar papers...')
33
+ start = time.time()
34
  input_sentences = sent_tokenize(abstract_text_input)
35
 
36
  # TODO handle pdf file input
 
43
  name, papers = get_text_from_author_id(author_id_input)
44
 
45
  # Compute Doc-level affinity scores for the Papers
46
+ print('computing scores...')
47
  titles, abstracts, doc_scores = compute_document_score(
48
  doc_model,
49
  tokenizer,
 
65
  doc_scores = doc_scores[:num_papers_show]
66
 
67
  display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
68
+ end = time.time()
69
+ print('retrieval complete in [%0.2f] seconds'%(end - start))
70
 
71
  return (
72
  gr.update(choices=display_title, interactive=True, visible=True), # set of papers
 
82
  abstract,
83
  K=2
84
  ):
85
+ print('obtaining highlights..')
86
+ start = time.time()
87
  # Compute sent-level and phrase-level affinity scores for each papers
88
  sent_ids, sent_scores, info = get_highlight_info(
89
  sent_model,
 
109
  'highlight': word_scores
110
  }
111
  pickle.dump(tmp, open('highlight_info.pkl', 'wb'))
112
+ end = time.time()
113
+ print('done in [%0.2f] seconds'%(end - start))
114
 
115
  # update the visibility of radio choices
116
  return gr.update(visible=True)