Spaces:
Runtime error
Runtime error
adding slider to the top results
Browse files- app.py +259 -226
- input_format.py +0 -1
app.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import pickle
|
6 |
import nltk
|
7 |
-
nltk.download('punkt') # tokenizer
|
8 |
-
nltk.download('averaged_perceptron_tagger') # postagger
|
9 |
import time
|
10 |
|
11 |
from input_format import *
|
12 |
from score import *
|
13 |
|
14 |
-
#
|
|
|
|
|
|
|
15 |
#torch.cuda.is_available = lambda : False # uncomment to test with CPU only
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
#pretrained_model = 'allenai/specter'
|
@@ -20,21 +20,25 @@ tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
|
|
20 |
doc_model = AutoModel.from_pretrained(pretrained_model)
|
21 |
doc_model.to(device)
|
22 |
|
23 |
-
|
24 |
sent_model = doc_model # have the same model for document and sentence level
|
25 |
|
26 |
# OR specify different model for sentence level
|
27 |
#sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
|
28 |
#sent_model.to(device)
|
29 |
|
|
|
|
|
|
|
30 |
def get_similar_paper(
|
31 |
title_input,
|
32 |
abstract_text_input,
|
33 |
author_id_input,
|
|
|
|
|
34 |
results={}, # this state variable will be updated and returned
|
35 |
-
):
|
36 |
progress = gr.Progress()
|
37 |
-
num_papers_show = 10 # number of top papers to show from the reviewer
|
38 |
if title_input == None:
|
39 |
title_input = '' # if no title is given, just focus on abstract.
|
40 |
print('retrieving similar papers...')
|
@@ -60,17 +64,18 @@ def get_similar_paper(
|
|
60 |
|
61 |
results = {
|
62 |
'name': name,
|
|
|
63 |
'titles': titles,
|
64 |
'abstracts': abstracts,
|
65 |
'urls': paper_urls,
|
66 |
'doc_scores': doc_scores
|
67 |
}
|
68 |
|
69 |
-
# Select top
|
70 |
-
titles = titles[:
|
71 |
-
abstracts = abstracts[:
|
72 |
-
doc_scores = doc_scores[:
|
73 |
-
paper_urls = paper_urls[:
|
74 |
|
75 |
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
|
76 |
end = time.time()
|
@@ -90,8 +95,8 @@ def get_similar_paper(
|
|
90 |
tokenizer,
|
91 |
abstract_text_input,
|
92 |
ab,
|
93 |
-
K=None,
|
94 |
-
top_pair_num=
|
95 |
)
|
96 |
num_cand_sents = sent_ids.shape[1]
|
97 |
|
@@ -116,104 +121,136 @@ def get_similar_paper(
|
|
116 |
'top_pairs': top_pairs_info,
|
117 |
'url': url
|
118 |
}
|
119 |
-
|
120 |
end = time.time()
|
121 |
highlight_time = end - start
|
122 |
print('done in [%0.2f] seconds'%(highlight_time))
|
123 |
|
124 |
-
# debugging only
|
125 |
-
pickle.dump(results, open('info.pkl', 'wb'))
|
126 |
-
|
127 |
## Set up output elements
|
128 |
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
title = results[display_title[0]]['title'] # set default title as the top paper
|
131 |
url = results[display_title[0]]['url']
|
132 |
aff_score = results[display_title[0]]['doc_score']
|
133 |
title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
|
134 |
aff_score_out = '##### Affinity Score: %s'%aff_score
|
135 |
-
|
|
|
|
|
|
|
136 |
gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
|
137 |
gr.update(choices=input_sentences, value=input_sentences[0], interactive=True), # submission sentences
|
138 |
gr.update(value=title_out), # paper_title
|
139 |
-
gr.update(value=aff_score_out) # affinity
|
|
|
|
|
140 |
]
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
for i in range(top_papers_show):
|
147 |
if i == 0:
|
148 |
-
|
149 |
-
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
|
|
|
|
150 |
gr.update(value="""#### Affinity Score: %0.3f
|
151 |
-
|
152 |
<p>Measures how similar the paper's abstract is to the submission abstract.</p>
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
]
|
157 |
else:
|
158 |
-
|
159 |
-
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
|
|
|
|
160 |
gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
163 |
for j in range(top_num_info_show):
|
164 |
if i == 0 and j == 0:
|
165 |
-
|
|
|
166 |
gr.update(value="""Sentence Relevance:\n%0.3f
|
167 |
<div class="help-tip">
|
168 |
<p>Measures how similar the sentence pairs are.</p>
|
169 |
-
</div>"""%tp[j]['score'], visible=True)
|
170 |
-
|
171 |
-
tp[j]['query'],
|
172 |
-
tp[j]['candidate']['original'],
|
173 |
-
tp[j]['candidate']
|
174 |
-
]
|
175 |
else:
|
176 |
-
|
177 |
-
gr.update(value='Sentence Relevance:\n%0.3f'%tp[j]['score'], visible=True)
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
#
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
For each paper, two sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
|
193 |
-
|
194 |
-
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
|
195 |
-
"""%(author_id_input, results['name']),
|
196 |
-
visible=True)] # result 1 description
|
197 |
|
198 |
-
|
199 |
|
200 |
-
# progress status
|
201 |
-
out += [gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True)]
|
202 |
-
|
203 |
-
# result 2 description
|
204 |
-
desc = """
|
205 |
-
##### Click a paper by %s on the left (sorted by affinity scores), and a sentence from the submission on the right, to see which parts of the paper are relevant.
|
206 |
-
"""%results['name']
|
207 |
-
out += [gr.update(value=desc)]
|
208 |
-
|
209 |
-
# slider to control the number of highlights
|
210 |
-
out += [gr.update(value=1, maximum=len(sent_tokenize(abstracts[0])))]
|
211 |
-
|
212 |
-
# finally add the search results to pass on to the Gradio State varaible
|
213 |
-
out += [results]
|
214 |
-
|
215 |
-
return tuple(out)
|
216 |
-
|
217 |
def show_more(info):
|
218 |
# show the interactive part of the app
|
219 |
return (
|
@@ -290,6 +327,49 @@ def change_num_highlight(
|
|
290 |
else:
|
291 |
return
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
with gr.Blocks(css='style.css') as demo:
|
294 |
info = gr.State({}) # cached search results as a State variable shared throughout
|
295 |
|
@@ -310,15 +390,13 @@ A typical meta-reviewer workflow lacks supportive information on **what makes th
|
|
310 |
|
311 |
R2P2 provides more information about each reviewer. It searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
|
312 |
"""
|
313 |
-
# TODO add instruction video link
|
314 |
# More details (video, addendum)
|
315 |
-
more_details_instruction = """Check out <a href="", target="_blank">this video</a> for a quick
|
316 |
|
317 |
gr.Markdown(general_instruction)
|
318 |
gr.HTML(more_details_instruction)
|
319 |
gr.Markdown("""---""")
|
320 |
|
321 |
-
|
322 |
### INPUT
|
323 |
with gr.Row() as input_row:
|
324 |
with gr.Column(scale=3):
|
@@ -350,97 +428,57 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
350 |
with gr.Row():
|
351 |
search_status = gr.Textbox(label='Search Status', interactive=False, visible=False)
|
352 |
|
353 |
-
|
354 |
-
|
355 |
-
#
|
356 |
-
## ONE BLOCK OF INFO FOR A SINGLE PAPER
|
357 |
-
## PAPER1
|
358 |
-
with gr.Row():
|
359 |
-
result1_desc = gr.Markdown(value='', visible=False)
|
360 |
with gr.Row():
|
361 |
-
with gr.Column(scale=
|
362 |
-
|
363 |
-
with gr.Column(scale=
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
with gr.Column(scale=4):
|
369 |
-
sent_pair_source1_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
370 |
-
sent_pair_source1_1_hl = gr.components.Interpretation(sent_pair_source1_1)
|
371 |
-
with gr.Column(scale=4):
|
372 |
-
sent_pair_candidate1_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
373 |
-
sent_pair_candidate1_1_hl = gr.components.Interpretation(sent_pair_candidate1_1)
|
374 |
-
with gr.Row() as rel1_2:
|
375 |
-
with gr.Column(scale=1):
|
376 |
-
sent_pair_score1_2 = gr.Markdown(interactive=False, value='', visible=False)
|
377 |
-
with gr.Column(scale=4):
|
378 |
-
sent_pair_source1_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
379 |
-
sent_pair_source1_2_hl = gr.components.Interpretation(sent_pair_source1_2)
|
380 |
-
with gr.Column(scale=4):
|
381 |
-
sent_pair_candidate1_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
382 |
-
sent_pair_candidate1_2_hl = gr.components.Interpretation(sent_pair_candidate1_2)
|
383 |
-
|
384 |
-
with gr.Row(visible=False) as demarc1:
|
385 |
-
gr.Markdown(
|
386 |
-
"""---"""
|
387 |
-
)
|
388 |
-
|
389 |
-
## PAPER 2
|
390 |
-
with gr.Row():
|
391 |
-
with gr.Column(scale=3):
|
392 |
-
paper_title2 = gr.Markdown(value='', visible=False)
|
393 |
-
with gr.Column(scale=1):
|
394 |
-
affinity2 = gr.Markdown(value='', visible=False)
|
395 |
-
with gr.Row() as rel2_1:
|
396 |
-
with gr.Column(scale=1):
|
397 |
-
sent_pair_score2_1 = gr.Markdown(interactive=False, value='', visible=False)
|
398 |
-
with gr.Column(scale=4):
|
399 |
-
sent_pair_source2_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
400 |
-
sent_pair_source2_1_hl = gr.components.Interpretation(sent_pair_source2_1)
|
401 |
-
with gr.Column(scale=4):
|
402 |
-
sent_pair_candidate2_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
403 |
-
sent_pair_candidate2_1_hl = gr.components.Interpretation(sent_pair_candidate2_1)
|
404 |
-
with gr.Row() as rel2_2:
|
405 |
-
with gr.Column(scale=1):
|
406 |
-
sent_pair_score2_2 = gr.Markdown(interactive=False, value='', visible=False)
|
407 |
-
with gr.Column(scale=4):
|
408 |
-
sent_pair_source2_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
409 |
-
sent_pair_source2_2_hl = gr.components.Interpretation(sent_pair_source2_2)
|
410 |
-
with gr.Column(scale=4):
|
411 |
-
sent_pair_candidate2_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
412 |
-
sent_pair_candidate2_2_hl = gr.components.Interpretation(sent_pair_candidate2_2)
|
413 |
-
|
414 |
-
with gr.Row(visible=False) as demarc2:
|
415 |
-
gr.Markdown(
|
416 |
-
"""---"""
|
417 |
-
)
|
418 |
-
|
419 |
-
## PAPER 3
|
420 |
-
with gr.Row():
|
421 |
-
with gr.Column(scale=3):
|
422 |
-
paper_title3 = gr.Markdown(value='', visible=False)
|
423 |
-
with gr.Column(scale=1):
|
424 |
-
affinity3 = gr.Markdown(value='', visible=False)
|
425 |
-
with gr.Row() as rel3_1:
|
426 |
-
with gr.Column(scale=1):
|
427 |
-
sent_pair_score3_1 = gr.Markdown(interactive=False, value='', visible=False)
|
428 |
-
with gr.Column(scale=4):
|
429 |
-
sent_pair_source3_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
430 |
-
sent_pair_source3_1_hl = gr.components.Interpretation(sent_pair_source3_1)
|
431 |
-
with gr.Column(scale=4):
|
432 |
-
sent_pair_candidate3_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
433 |
-
sent_pair_candidate3_1_hl = gr.components.Interpretation(sent_pair_candidate3_1)
|
434 |
-
with gr.Row() as rel3_2:
|
435 |
-
with gr.Column(scale=1):
|
436 |
-
sent_pair_score3_2 = gr.Markdown(interactive=False, value='', visible=False)
|
437 |
-
with gr.Column(scale=4):
|
438 |
-
sent_pair_source3_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
439 |
-
sent_pair_source3_2_hl = gr.components.Interpretation(sent_pair_source3_2)
|
440 |
-
with gr.Column(scale=4):
|
441 |
-
sent_pair_candidate3_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
442 |
-
sent_pair_candidate3_2_hl = gr.components.Interpretation(sent_pair_candidate3_2)
|
443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
## Show more button
|
445 |
with gr.Row():
|
446 |
see_more_rel_btn = gr.Button('Explore more', visible=False)
|
@@ -499,74 +537,47 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
499 |
# highlighted text from paper
|
500 |
highlight = gr.components.Interpretation(paper_abstract)
|
501 |
|
502 |
-
|
503 |
### EVENT LISTENERS
|
504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
compute_btn.click(
|
506 |
fn=show_status,
|
507 |
inputs=[],
|
508 |
outputs=search_status
|
509 |
)
|
510 |
|
511 |
-
# retrieve similar papers and show top results
|
512 |
compute_btn.click(
|
513 |
fn=get_similar_paper,
|
514 |
inputs=[
|
515 |
title_input,
|
516 |
abstract_text_input,
|
517 |
author_id_input,
|
|
|
|
|
518 |
info
|
519 |
],
|
520 |
-
outputs=[
|
521 |
-
selected_papers_radio, # list of papers for show more section
|
522 |
-
source_sentences, # list of sentences for show more section
|
523 |
-
paper_title, # paper title for show more section
|
524 |
-
affinity, # paper affinity for show more section
|
525 |
-
paper_title1, # paper info
|
526 |
-
affinity1,
|
527 |
-
sent_pair_score1_1,
|
528 |
-
sent_pair_source1_1,
|
529 |
-
sent_pair_source1_1_hl,
|
530 |
-
sent_pair_candidate1_1,
|
531 |
-
sent_pair_candidate1_1_hl,
|
532 |
-
sent_pair_score1_2,
|
533 |
-
sent_pair_source1_2,
|
534 |
-
sent_pair_source1_2_hl,
|
535 |
-
sent_pair_candidate1_2,
|
536 |
-
sent_pair_candidate1_2_hl,
|
537 |
-
paper_title2,
|
538 |
-
affinity2,
|
539 |
-
sent_pair_score2_1,
|
540 |
-
sent_pair_source2_1,
|
541 |
-
sent_pair_source2_1_hl,
|
542 |
-
sent_pair_candidate2_1,
|
543 |
-
sent_pair_candidate2_1_hl,
|
544 |
-
sent_pair_score2_2,
|
545 |
-
sent_pair_source2_2,
|
546 |
-
sent_pair_source2_2_hl,
|
547 |
-
sent_pair_candidate2_2,
|
548 |
-
sent_pair_candidate2_2_hl,
|
549 |
-
paper_title3,
|
550 |
-
affinity3,
|
551 |
-
sent_pair_score3_1,
|
552 |
-
sent_pair_source3_1,
|
553 |
-
sent_pair_source3_1_hl,
|
554 |
-
sent_pair_candidate3_1,
|
555 |
-
sent_pair_candidate3_1_hl,
|
556 |
-
sent_pair_score3_2,
|
557 |
-
sent_pair_source3_2,
|
558 |
-
sent_pair_source3_2_hl,
|
559 |
-
sent_pair_candidate3_2,
|
560 |
-
sent_pair_candidate3_2_hl,
|
561 |
-
see_more_rel_btn,
|
562 |
-
result1_desc,
|
563 |
-
demarc1,
|
564 |
-
demarc2,
|
565 |
-
search_status,
|
566 |
-
result2_desc,
|
567 |
-
highlight_slider,
|
568 |
-
info,
|
569 |
-
],
|
570 |
show_progress=True,
|
571 |
scroll_to_output=True
|
572 |
)
|
@@ -617,6 +628,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
617 |
]
|
618 |
)
|
619 |
|
|
|
620 |
highlight_slider.change(
|
621 |
fn=change_num_highlight,
|
622 |
inputs=[
|
@@ -630,6 +642,27 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
630 |
]
|
631 |
)
|
632 |
|
633 |
-
|
634 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import pickle
|
5 |
import nltk
|
|
|
|
|
6 |
import time
|
7 |
|
8 |
from input_format import *
|
9 |
from score import *
|
10 |
|
11 |
+
nltk.download('punkt') # tokenizer
|
12 |
+
nltk.download('averaged_perceptron_tagger') # postagger
|
13 |
+
|
14 |
+
## load document scoring model
|
15 |
#torch.cuda.is_available = lambda : False # uncomment to test with CPU only
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
#pretrained_model = 'allenai/specter'
|
|
|
20 |
doc_model = AutoModel.from_pretrained(pretrained_model)
|
21 |
doc_model.to(device)
|
22 |
|
23 |
+
## load sentence model
|
24 |
sent_model = doc_model # have the same model for document and sentence level
|
25 |
|
26 |
# OR specify different model for sentence level
|
27 |
#sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
|
28 |
#sent_model.to(device)
|
29 |
|
30 |
+
NUM_PAPERS_SHOW = 5 # max number of top papers to show from the reviewer upfront
|
31 |
+
NUM_PAIRS_SHOW = 5 # max number of top sentence pairs to show
|
32 |
+
|
33 |
def get_similar_paper(
|
34 |
title_input,
|
35 |
abstract_text_input,
|
36 |
author_id_input,
|
37 |
+
top_paper_slider,
|
38 |
+
top_pair_slider,
|
39 |
results={}, # this state variable will be updated and returned
|
40 |
+
):
|
41 |
progress = gr.Progress()
|
|
|
42 |
if title_input == None:
|
43 |
title_input = '' # if no title is given, just focus on abstract.
|
44 |
print('retrieving similar papers...')
|
|
|
64 |
|
65 |
results = {
|
66 |
'name': name,
|
67 |
+
'author_url': author_id_input,
|
68 |
'titles': titles,
|
69 |
'abstracts': abstracts,
|
70 |
'urls': paper_urls,
|
71 |
'doc_scores': doc_scores
|
72 |
}
|
73 |
|
74 |
+
# Select top 10 papers to show
|
75 |
+
titles = titles[:10]
|
76 |
+
abstracts = abstracts[:10]
|
77 |
+
doc_scores = doc_scores[:10]
|
78 |
+
paper_urls = paper_urls[:10]
|
79 |
|
80 |
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
|
81 |
end = time.time()
|
|
|
95 |
tokenizer,
|
96 |
abstract_text_input,
|
97 |
ab,
|
98 |
+
K=None,
|
99 |
+
top_pair_num=10, # top ten sentence pairs at max to show upfront
|
100 |
)
|
101 |
num_cand_sents = sent_ids.shape[1]
|
102 |
|
|
|
121 |
'top_pairs': top_pairs_info,
|
122 |
'url': url
|
123 |
}
|
124 |
+
|
125 |
end = time.time()
|
126 |
highlight_time = end - start
|
127 |
print('done in [%0.2f] seconds'%(highlight_time))
|
128 |
|
|
|
|
|
|
|
129 |
## Set up output elements
|
130 |
|
131 |
+
## Components for Initial Part
|
132 |
+
result1_desc_value = """
|
133 |
+
<h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
|
134 |
+
|
135 |
+
For each paper, top %d sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
|
136 |
+
|
137 |
+
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
|
138 |
+
"""%(int(top_paper_slider), author_id_input, results['name'], int(top_pair_slider))
|
139 |
+
|
140 |
+
out1 = [
|
141 |
+
gr.update(visible=True), # Explore more button
|
142 |
+
gr.update(value=result1_desc_value, visible=True), # result 1 description
|
143 |
+
gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True), # search status
|
144 |
+
gr.update(visible=True), # top paper slider
|
145 |
+
gr.update(visible=True) # top pair slider
|
146 |
+
]
|
147 |
+
|
148 |
+
### Components for Results in Initial Part
|
149 |
+
top_papers_show = int(top_paper_slider) # number of top papers to show upfront
|
150 |
+
top_num_info_show = int(top_pair_slider) # number of sentence pairs from each paper to show upfront
|
151 |
+
output = setup_outputs(results, top_papers_show, top_num_info_show)
|
152 |
+
out2 = []
|
153 |
+
for x in output:
|
154 |
+
out2 += x
|
155 |
+
|
156 |
+
### Components for Explore More Section
|
157 |
+
# list of top papers, sentences to select from, paper_title, affinity
|
158 |
title = results[display_title[0]]['title'] # set default title as the top paper
|
159 |
url = results[display_title[0]]['url']
|
160 |
aff_score = results[display_title[0]]['doc_score']
|
161 |
title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
|
162 |
aff_score_out = '##### Affinity Score: %s'%aff_score
|
163 |
+
result2_desc_value = """
|
164 |
+
##### Click a paper by %s (left, sorted by affinity scores), and a sentence from the submission (center), to see which parts of the paper are relevant (right).
|
165 |
+
"""%results['name']
|
166 |
+
out3 = [
|
167 |
gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
|
168 |
gr.update(choices=input_sentences, value=input_sentences[0], interactive=True), # submission sentences
|
169 |
gr.update(value=title_out), # paper_title
|
170 |
+
gr.update(value=aff_score_out), # affinity
|
171 |
+
gr.update(value=result2_desc_value), # result 2 description (show more section)
|
172 |
+
gr.update(value=1, maximum=len(sent_tokenize(abstracts[0]))), # highlight slider to control
|
173 |
]
|
174 |
|
175 |
+
## Return by adding the State variable info
|
176 |
+
return out1 + out2 + out3 + [results]
|
177 |
+
|
178 |
+
def setup_outputs(info, top_papers_show, top_num_info_show):
|
179 |
+
titles = info['titles']
|
180 |
+
doc_scores = info['doc_scores']
|
181 |
+
paper_urls = info['urls']
|
182 |
+
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(info['titles'], info['doc_scores'])]
|
183 |
+
title = []
|
184 |
+
affinity = []
|
185 |
+
sent_pair_score = []
|
186 |
+
sent_text_query = []
|
187 |
+
sent_text_candidate = []
|
188 |
+
sent_hl_query = []
|
189 |
+
sent_hl_candidate = []
|
190 |
+
demarc_lines = []
|
191 |
for i in range(top_papers_show):
|
192 |
if i == 0:
|
193 |
+
title.append(
|
194 |
+
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
195 |
+
)
|
196 |
+
affinity.append(
|
197 |
gr.update(value="""#### Affinity Score: %0.3f
|
198 |
+
<div class="help-tip">
|
199 |
<p>Measures how similar the paper's abstract is to the submission abstract.</p>
|
200 |
+
</div>
|
201 |
+
"""%doc_scores[i], visible=True) # document affinity
|
202 |
+
)
|
|
|
203 |
else:
|
204 |
+
title.append(
|
205 |
+
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
206 |
+
)
|
207 |
+
affinity.append(
|
208 |
gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
|
209 |
+
)
|
210 |
+
demarc_lines.append(gr.Markdown.update(visible=True))
|
211 |
+
|
212 |
+
# fill in the rest as
|
213 |
+
tp = info[display_title[i]]['top_pairs']
|
214 |
for j in range(top_num_info_show):
|
215 |
if i == 0 and j == 0:
|
216 |
+
# for the first entry add help tip
|
217 |
+
sent_pair_score.append(
|
218 |
gr.update(value="""Sentence Relevance:\n%0.3f
|
219 |
<div class="help-tip">
|
220 |
<p>Measures how similar the sentence pairs are.</p>
|
221 |
+
</div>"""%tp[j]['score'], visible=True)
|
222 |
+
)
|
|
|
|
|
|
|
|
|
223 |
else:
|
224 |
+
sent_pair_score.append(
|
225 |
+
gr.Textbox.update(value='Sentence Relevance:\n%0.3f'%tp[j]['score'], visible=True)
|
226 |
+
)
|
227 |
+
sent_text_query.append(gr.Textbox.update(tp[j]['query']['original']))
|
228 |
+
sent_text_candidate.append(gr.Textbox.update(tp[j]['candidate']['original']))
|
229 |
+
sent_hl_query.append(tp[j]['query'])
|
230 |
+
sent_hl_candidate.append(tp[j]['candidate'])
|
231 |
+
#row2.append(gr.update(visible=True))
|
232 |
+
sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
|
233 |
+
sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
|
234 |
+
sent_text_candidate += [gr.Textbox.update(value='', visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
|
235 |
+
sent_hl_query += [None] * (NUM_PAIRS_SHOW - top_num_info_show)
|
236 |
+
sent_hl_candidate += [None] * (NUM_PAIRS_SHOW - top_num_info_show)
|
237 |
|
238 |
+
# mark others not visible
|
239 |
+
title += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
|
240 |
+
affinity += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
|
241 |
+
demarc_lines += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
|
242 |
+
sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
243 |
+
sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
244 |
+
sent_text_candidate += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
245 |
+
sent_hl_query += [None] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
246 |
+
sent_hl_candidate += [None] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
247 |
|
248 |
+
assert(len(title) == NUM_PAPERS_SHOW)
|
249 |
+
assert(len(affinity) == NUM_PAPERS_SHOW)
|
250 |
+
assert(len(sent_pair_score) == NUM_PAIRS_SHOW * NUM_PAPERS_SHOW)
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
return title, affinity, demarc_lines, sent_pair_score, sent_text_query, sent_text_candidate, sent_hl_query, sent_hl_candidate
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
def show_more(info):
|
255 |
# show the interactive part of the app
|
256 |
return (
|
|
|
327 |
else:
|
328 |
return
|
329 |
|
330 |
+
def change_top_output(top_paper_slider, top_pair_slider, info={}):
|
331 |
+
top_papers_show = int(top_paper_slider)
|
332 |
+
top_num_info_show = int(top_pair_slider)
|
333 |
+
|
334 |
+
result1_desc_value = """
|
335 |
+
<h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
|
336 |
+
|
337 |
+
For each paper, top %d sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
|
338 |
+
|
339 |
+
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
|
340 |
+
"""%(int(top_paper_slider), info['author_url'], info['name'], int(top_pair_slider))
|
341 |
+
if len(info.keys()) != 0:
|
342 |
+
tmp = setup_outputs(info, top_papers_show, top_num_info_show)
|
343 |
+
x = []
|
344 |
+
for t in tmp:
|
345 |
+
x += t
|
346 |
+
return x + [gr.update(value=result1_desc_value)]
|
347 |
+
else:
|
348 |
+
return
|
349 |
+
|
350 |
+
def reinit_hl(top_paper_slider, top_pair_slider, *args):
|
351 |
+
args = list(args)
|
352 |
+
base = 3*NUM_PAPERS_SHOW+NUM_PAPERS_SHOW*NUM_PAIRS_SHOW
|
353 |
+
increment = NUM_PAPERS_SHOW*NUM_PAIRS_SHOW
|
354 |
+
text_query = args[base:base+increment]
|
355 |
+
text_candidate = args[base+increment:base+2*increment]
|
356 |
+
hl_query = args[base+2*increment:base+3*increment]
|
357 |
+
hl_candidate = args[base+3*increment:base+4*increment]
|
358 |
+
for i in range(int(top_paper_slider)):
|
359 |
+
for j in range(int(top_pair_slider),NUM_PAIRS_SHOW):
|
360 |
+
hl_query[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_query[i*NUM_PAIRS_SHOW+j])
|
361 |
+
hl_candidate[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_candidate[i*NUM_PAIRS_SHOW+j])
|
362 |
+
for i in range(int(top_paper_slider),NUM_PAPERS_SHOW):
|
363 |
+
for j in range(NUM_PAPERS_SHOW):
|
364 |
+
hl_query[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_query[i*NUM_PAIRS_SHOW+j])
|
365 |
+
hl_candidate[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_candidate[i*NUM_PAIRS_SHOW+j])
|
366 |
+
|
367 |
+
args[base:base+increment] = text_query
|
368 |
+
args[base+increment:base+2*increment] = text_candidate
|
369 |
+
args[base+2*increment:base+3*increment] = hl_query
|
370 |
+
args[base+3*increment:base+4*increment] = hl_candidate
|
371 |
+
return args
|
372 |
+
|
373 |
with gr.Blocks(css='style.css') as demo:
|
374 |
info = gr.State({}) # cached search results as a State variable shared throughout
|
375 |
|
|
|
390 |
|
391 |
R2P2 provides more information about each reviewer. It searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
|
392 |
"""
|
|
|
393 |
# More details (video, addendum)
|
394 |
+
more_details_instruction = """Check out <a href="https://drive.google.com/file/d/1Ex_-cOplBitO7riNGliecFc8H3chXUN-/view?usp=share_link", target="_blank">this video</a> for a quick introduction of what R2P2 is and how it can help. You can find more details <a href="file/details.html", target="_blank">here</a>, along with our privacy policy and disclaimer."""
|
395 |
|
396 |
gr.Markdown(general_instruction)
|
397 |
gr.HTML(more_details_instruction)
|
398 |
gr.Markdown("""---""")
|
399 |
|
|
|
400 |
### INPUT
|
401 |
with gr.Row() as input_row:
|
402 |
with gr.Column(scale=3):
|
|
|
428 |
with gr.Row():
|
429 |
search_status = gr.Textbox(label='Search Status', interactive=False, visible=False)
|
430 |
|
431 |
+
### OVERVIEW RESULTS
|
432 |
+
# Paper title, score, and top-ranking sentence pairs
|
433 |
+
# a knob for controlling the number of output displayed
|
|
|
|
|
|
|
|
|
434 |
with gr.Row():
|
435 |
+
with gr.Column(scale=5):
|
436 |
+
result1_desc = gr.Markdown(value='', visible=False)
|
437 |
+
with gr.Column(scale=2):
|
438 |
+
with gr.Row():
|
439 |
+
top_paper_slider = gr.Slider(label='Top-K Papers by the Reviewer', value=3, minimum=3, step=1, maximum=NUM_PAPERS_SHOW, visible=False)
|
440 |
+
with gr.Row():
|
441 |
+
top_pair_slider = gr.Slider(label='Top-K Sentence Pairs per Paper', value=2, minimum=2, step=1, maximum=NUM_PAIRS_SHOW, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
|
443 |
+
paper_title_up = []
|
444 |
+
paper_affinity_up = []
|
445 |
+
sent_pair_score = []
|
446 |
+
sent_text_query = []
|
447 |
+
sent_text_candidate = []
|
448 |
+
sent_hl_query = []
|
449 |
+
sent_hl_candidate = []
|
450 |
+
demarc_lines = []
|
451 |
+
|
452 |
+
row_elems1 = []
|
453 |
+
row_elems2 = []
|
454 |
+
|
455 |
+
for i in range(NUM_PAPERS_SHOW):
|
456 |
+
with gr.Row():
|
457 |
+
with gr.Column(scale=3):
|
458 |
+
tt = gr.Markdown(value='', visible=False)
|
459 |
+
paper_title_up.append(tt)
|
460 |
+
with gr.Column(scale=1):
|
461 |
+
aff = gr.Markdown(value='', visible=False)
|
462 |
+
paper_affinity_up.append(aff)
|
463 |
+
for j in range(NUM_PAIRS_SHOW):
|
464 |
+
with gr.Row():
|
465 |
+
with gr.Column(scale=1):
|
466 |
+
sps = gr.Markdown(value='', visible=False)
|
467 |
+
sent_pair_score.append(sps)
|
468 |
+
with gr.Column(scale=5):
|
469 |
+
stq = gr.Textbox(label='Sentence from Submission', visible=False)
|
470 |
+
shq = gr.components.Interpretation(stq, visible=False)
|
471 |
+
sent_text_query.append(stq)
|
472 |
+
sent_hl_query.append(shq)
|
473 |
+
with gr.Column(scale=5):
|
474 |
+
stc = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
475 |
+
shc = gr.components.Interpretation(stc, visible=False)
|
476 |
+
sent_text_candidate.append(stc)
|
477 |
+
sent_hl_candidate.append(shc)
|
478 |
+
with gr.Row():
|
479 |
+
dml = gr.Markdown("""---""", visible=False)
|
480 |
+
demarc_lines.append(dml)
|
481 |
+
|
482 |
## Show more button
|
483 |
with gr.Row():
|
484 |
see_more_rel_btn = gr.Button('Explore more', visible=False)
|
|
|
537 |
# highlighted text from paper
|
538 |
highlight = gr.components.Interpretation(paper_abstract)
|
539 |
|
|
|
540 |
### EVENT LISTENERS
|
541 |
|
542 |
+
# components to work with
|
543 |
+
init_components = [
|
544 |
+
see_more_rel_btn, # explore more button
|
545 |
+
result1_desc, # description for first results
|
546 |
+
search_status, # search status
|
547 |
+
top_paper_slider,
|
548 |
+
top_pair_slider
|
549 |
+
]
|
550 |
+
|
551 |
+
init_result_components = \
|
552 |
+
paper_title_up + paper_affinity_up + demarc_lines + sent_pair_score + \
|
553 |
+
sent_text_query + sent_text_candidate + sent_hl_query + sent_hl_candidate
|
554 |
+
|
555 |
+
explore_more_components = [
|
556 |
+
selected_papers_radio, # list of papers for show more section
|
557 |
+
source_sentences, # list of sentences for show more section
|
558 |
+
paper_title, # paper title for show more section
|
559 |
+
affinity, # affinity for show more section
|
560 |
+
result2_desc, # description for explore more
|
561 |
+
highlight_slider, # highlight slider
|
562 |
+
]
|
563 |
+
|
564 |
compute_btn.click(
|
565 |
fn=show_status,
|
566 |
inputs=[],
|
567 |
outputs=search_status
|
568 |
)
|
569 |
|
|
|
570 |
compute_btn.click(
|
571 |
fn=get_similar_paper,
|
572 |
inputs=[
|
573 |
title_input,
|
574 |
abstract_text_input,
|
575 |
author_id_input,
|
576 |
+
top_paper_slider,
|
577 |
+
top_pair_slider,
|
578 |
info
|
579 |
],
|
580 |
+
outputs=init_components + init_result_components + explore_more_components + [info],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
show_progress=True,
|
582 |
scroll_to_output=True
|
583 |
)
|
|
|
628 |
]
|
629 |
)
|
630 |
|
631 |
+
# change number of higlights to show
|
632 |
highlight_slider.change(
|
633 |
fn=change_num_highlight,
|
634 |
inputs=[
|
|
|
642 |
]
|
643 |
)
|
644 |
|
645 |
+
# change number of top papers to show initially
|
646 |
+
top_paper_slider.change(
|
647 |
+
fn=change_top_output,
|
648 |
+
inputs=[
|
649 |
+
top_paper_slider,
|
650 |
+
top_pair_slider,
|
651 |
+
info
|
652 |
+
],
|
653 |
+
outputs=init_result_components+[result1_desc]
|
654 |
+
)
|
655 |
+
|
656 |
+
# change number of top sentence pairs to show initially
|
657 |
+
top_pair_slider.change(
|
658 |
+
fn=change_top_output,
|
659 |
+
inputs=[
|
660 |
+
top_paper_slider,
|
661 |
+
top_pair_slider,
|
662 |
+
info
|
663 |
+
],
|
664 |
+
outputs=init_result_components+[result1_desc]
|
665 |
+
)
|
666 |
|
667 |
+
if __name__ == "__main__":
|
668 |
+
demo.queue().launch() # add ?__theme=light to force light mode
|
input_format.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import numpy as np
|
2 |
from pypdf import PdfReader
|
3 |
from urllib.parse import urlparse
|
4 |
import requests
|
|
|
|
|
1 |
from pypdf import PdfReader
|
2 |
from urllib.parse import urlparse
|
3 |
import requests
|