Spaces:
Running
on
Zero
Running
on
Zero
import nvdiffrast.torch as dr | |
import torch | |
from ...utils.typing import * | |
class NVDiffRasterizerContext: | |
def __init__(self, context_type: str, device: torch.device) -> None: | |
self.device = device | |
self.ctx = self.initialize_context(context_type, device) | |
def initialize_context( | |
self, context_type: str, device: torch.device | |
) -> Union[dr.RasterizeGLContext, dr.RasterizeCudaContext]: | |
if context_type == "gl": | |
return dr.RasterizeGLContext(device=device) | |
elif context_type == "cuda": | |
return dr.RasterizeCudaContext(device=device) | |
else: | |
raise ValueError(f"Unknown rasterizer context type: {context_type}") | |
def vertex_transform( | |
self, verts: Float[Tensor, "Nv 3"], mvp_mtx: Float[Tensor, "B 4 4"] | |
) -> Float[Tensor, "B Nv 4"]: | |
verts_homo = torch.cat( | |
[verts, torch.ones([verts.shape[0], 1]).to(verts)], dim=-1 | |
) | |
return torch.matmul(verts_homo, mvp_mtx.permute(0, 2, 1)) | |
def rasterize( | |
self, | |
pos: Float[Tensor, "B Nv 4"], | |
tri: Integer[Tensor, "Nf 3"], | |
resolution: Union[int, Tuple[int, int]], | |
): | |
# rasterize in instance mode (single topology) | |
return dr.rasterize(self.ctx, pos.float(), tri.int(), resolution, grad_db=True) | |
def rasterize_one( | |
self, | |
pos: Float[Tensor, "Nv 4"], | |
tri: Integer[Tensor, "Nf 3"], | |
resolution: Union[int, Tuple[int, int]], | |
): | |
# rasterize one single mesh under a single viewpoint | |
rast, rast_db = self.rasterize(pos[None, ...], tri, resolution) | |
return rast[0], rast_db[0] | |
def antialias( | |
self, | |
color: Float[Tensor, "B H W C"], | |
rast: Float[Tensor, "B H W 4"], | |
pos: Float[Tensor, "B Nv 4"], | |
tri: Integer[Tensor, "Nf 3"], | |
) -> Float[Tensor, "B H W C"]: | |
return dr.antialias(color.float(), rast, pos.float(), tri.int()) | |
def interpolate( | |
self, | |
attr: Float[Tensor, "B Nv C"], | |
rast: Float[Tensor, "B H W 4"], | |
tri: Integer[Tensor, "Nf 3"], | |
rast_db=None, | |
diff_attrs=None, | |
) -> Float[Tensor, "B H W C"]: | |
return dr.interpolate( | |
attr.float(), rast, tri.int(), rast_db=rast_db, diff_attrs=diff_attrs | |
) | |
def interpolate_one( | |
self, | |
attr: Float[Tensor, "Nv C"], | |
rast: Float[Tensor, "B H W 4"], | |
tri: Integer[Tensor, "Nf 3"], | |
rast_db=None, | |
diff_attrs=None, | |
) -> Float[Tensor, "B H W C"]: | |
return self.interpolate(attr[None, ...], rast, tri, rast_db, diff_attrs) | |