import nvdiffrast.torch as dr import torch from ...utils.typing import * class NVDiffRasterizerContext: def __init__(self, context_type: str, device: torch.device) -> None: self.device = device self.ctx = self.initialize_context(context_type, device) def initialize_context( self, context_type: str, device: torch.device ) -> Union[dr.RasterizeGLContext, dr.RasterizeCudaContext]: if context_type == "gl": return dr.RasterizeGLContext(device=device) elif context_type == "cuda": return dr.RasterizeCudaContext(device=device) else: raise ValueError(f"Unknown rasterizer context type: {context_type}") def vertex_transform( self, verts: Float[Tensor, "Nv 3"], mvp_mtx: Float[Tensor, "B 4 4"] ) -> Float[Tensor, "B Nv 4"]: verts_homo = torch.cat( [verts, torch.ones([verts.shape[0], 1]).to(verts)], dim=-1 ) return torch.matmul(verts_homo, mvp_mtx.permute(0, 2, 1)) def rasterize( self, pos: Float[Tensor, "B Nv 4"], tri: Integer[Tensor, "Nf 3"], resolution: Union[int, Tuple[int, int]], ): # rasterize in instance mode (single topology) return dr.rasterize(self.ctx, pos.float(), tri.int(), resolution, grad_db=True) def rasterize_one( self, pos: Float[Tensor, "Nv 4"], tri: Integer[Tensor, "Nf 3"], resolution: Union[int, Tuple[int, int]], ): # rasterize one single mesh under a single viewpoint rast, rast_db = self.rasterize(pos[None, ...], tri, resolution) return rast[0], rast_db[0] def antialias( self, color: Float[Tensor, "B H W C"], rast: Float[Tensor, "B H W 4"], pos: Float[Tensor, "B Nv 4"], tri: Integer[Tensor, "Nf 3"], ) -> Float[Tensor, "B H W C"]: return dr.antialias(color.float(), rast, pos.float(), tri.int()) def interpolate( self, attr: Float[Tensor, "B Nv C"], rast: Float[Tensor, "B H W 4"], tri: Integer[Tensor, "Nf 3"], rast_db=None, diff_attrs=None, ) -> Float[Tensor, "B H W C"]: return dr.interpolate( attr.float(), rast, tri.int(), rast_db=rast_db, diff_attrs=diff_attrs ) def interpolate_one( self, attr: Float[Tensor, "Nv C"], rast: Float[Tensor, "B H W 4"], tri: Integer[Tensor, "Nf 3"], rast_db=None, diff_attrs=None, ) -> Float[Tensor, "B H W C"]: return self.interpolate(attr[None, ...], rast, tri, rast_db, diff_attrs)