File size: 15,265 Bytes
4d6e8c2
 
 
 
 
136719e
4d8b8b9
 
b4c7827
3a019fe
 
4d8b8b9
 
 
 
7b05291
4d8b8b9
4d6e8c2
 
 
 
 
 
2e69c42
1c33274
70f5f26
b18c63e
8ff37b6
 
 
 
 
 
2e69c42
b18c63e
2e69c42
b18c63e
 
 
 
2e69c42
b18c63e
2e69c42
b18c63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435ab1a
b18c63e
 
 
435ab1a
2e69c42
b18c63e
 
 
 
435ab1a
b18c63e
 
 
435ab1a
 
 
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
b18c63e
435ab1a
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
2e69c42
b18c63e
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71bf8c
4d6e8c2
 
 
 
 
76fccaf
70f5f26
b18c63e
2e69c42
 
 
b18c63e
435ab1a
b18c63e
 
 
 
2e69c42
 
 
 
 
 
 
 
 
 
 
 
b18c63e
2e69c42
8ff37b6
2e69c42
b18c63e
 
5414c47
b18c63e
 
 
 
 
 
 
 
5414c47
b18c63e
 
 
 
 
435ab1a
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e69c42
435ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5414c47
435ab1a
 
 
 
371be94
 
b18c63e
b4c7827
8ff37b6
5414c47
bea7c94
830a067
bea7c94
435ab1a
 
 
 
80cfa93
435ab1a
bea7c94
5414c47
2e69c42
5414c47
 
4d6e8c2
5414c47
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from tqdm import tqdm, trange
from sentence_transformers import SentenceTransformer


import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertForPreTraining, BertModel, AutoTokenizer, AutoModel, ModernBertForSequenceClassification, BertForSequenceClassification, RobertaForSequenceClassification


from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Submission 2: SBERT+MLP"
ROUTE = "/text"


if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")


MODEL = "mlp" #sk, mlp, ct, modern-base, modern-large, gte-base, gte-large 

class ConspiracyClassification768(
    nn.Module,
    PyTorchModelHubMixin, 
    # optionally, you can add metadata which gets pushed to the model card
):    
    def __init__(self, num_classes=8):
        super().__init__()
        self.h1 = nn.Linear(768, 100)
        self.h2 = nn.Linear(100, 100)
        self.h3 = nn.Linear(100, 100)
        self.h4 = nn.Linear(100, 50)
        self.h5 = nn.Linear(50, num_classes)
        self.dropout = nn.Dropout(0.2)
        self.activation = nn.ReLU()

        
    def forward(self, input_texts):
        outputs = self.h1(input_texts)
        outputs = self.activation(outputs)
        outputs = self.dropout(outputs)
        outputs = self.h2(outputs)
        outputs = self.activation(outputs)
        outputs = self.dropout(outputs)
        outputs = self.h3(outputs)
        outputs = self.activation(outputs)
        outputs = self.dropout(outputs)
        outputs = self.h4(outputs)
        outputs = self.activation(outputs)
        outputs = self.dropout(outputs)
        outputs = self.h5(outputs)
        
        return outputs  

class CTBERT(
    nn.Module,
    PyTorchModelHubMixin, 
    # optionally, you can add metadata which gets pushed to the model card
):
    def __init__(self, num_classes=8):
        super().__init__()
        self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')    
        self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
        
    def forward(self, input_ids, input_mask, token_type_ids):
        outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
        logits = outputs[1]
        
        return logits 

class conspiracyModelBase(
    nn.Module,
    PyTorchModelHubMixin, 
    # optionally, you can add metadata which gets pushed to the model card
):    
    def __init__(self, num_classes=8):
        super().__init__()
        self.n_classes = num_classes
        self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-base', num_labels=num_classes)    
        
    def forward(self, input_ids, input_mask):
        outputs = self.bert(input_ids = input_ids, attention_mask = input_mask)
        
        return outputs.logits

class conspiracyModelLarge(
    nn.Module,
    PyTorchModelHubMixin, 
    # optionally, you can add metadata which gets pushed to the model card
):    
    def __init__(self, num_classes=8):
        super().__init__()
        self.n_classes = num_classes
        self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-large', num_labels=num_classes)    
        
    def forward(self, input_ids, input_mask):
        outputs = self.bert(input_ids = input_ids, attention_mask = input_mask)
        
        return outputs.logits

class gteModelLarge(
    nn.Module,
    PyTorchModelHubMixin, 
    # optionally, you can add metadata which gets pushed to the model card
):    
    def __init__(self, num_classes=8):
        super().__init__()
        self.n_classes = num_classes
        self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
        self.cls = nn.Linear(1024, num_classes)
        
    def forward(self, input_ids, input_mask, input_type_ids):
        outputs = self.gte(input_ids = input_ids, attention_mask = input_mask, token_type_ids = input_type_ids)
        embeddings = outputs.last_hidden_state[:, 0]
        logits = self.cls(embeddings)
        return logits

class gteModel(
    nn.Module,
    PyTorchModelHubMixin, 
    # optionally, you can add metadata which gets pushed to the model card
):    
    def __init__(self, num_classes=8):
        super().__init__()
        self.n_classes = num_classes
        self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
        self.cls = nn.Linear(768, num_classes)
        
    def forward(self, input_ids, input_mask, input_type_ids):
        outputs = self.gte(input_ids = input_ids, attention_mask = input_mask, token_type_ids = input_type_ids)
        embeddings = outputs.last_hidden_state[:, 0]
        logits = self.cls(embeddings)
        return logits        

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    test_dataset = dataset["test"]

    if MODEL =="mlp":
        model = ConspiracyClassification768.from_pretrained("ypesk/frugal-ai-EURECOM-mlp-768-fullset")
        model = model.to(device)
        emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large")
        batch_size = 6
    
        test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset]))
        test_data = TensorDataset(test_texts)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
    elif MODEL == "sk":
        emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large")
        batch_size = 512
    
        test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset]))
        test_data = TensorDataset(test_texts)
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
    
        model = pickle.load(open('../svm.pkl', "rb"))
    
    
    elif MODEL == "ct":
        model = CTBERT.from_pretrained("ypesk/frugal-ai-EURECOM-ct-bert-baseline")
        model = model.to(device)
        tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert-fullset')
        
        test_texts = [t['quote'] for t in test_dataset]
    
        MAX_LEN = 256 #1024 # < m some tweets will be truncated
        
        tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
        test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
        test_token_type_ids = torch.tensor(test_token_type_ids)
        
        test_input_ids = torch.tensor(test_input_ids)
        test_attention_mask = torch.tensor(test_attention_mask)
    
        batch_size = 12 #
        test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
        
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
    
    elif MODEL == "modern-base":
        model = conspiracyModelBase.from_pretrained("ypesk/frugal-ai-EURECOM-modern-base-fullset")
        model = model.to(device)
        tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
            
        test_texts = [t['quote'] for t in test_dataset]
    
        MAX_LEN = 256 #1024 # < m some tweets will be truncated
        
        tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
        test_input_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['attention_mask']
        
        test_input_ids = torch.tensor(test_input_ids)
        test_attention_mask = torch.tensor(test_attention_mask)
    
        batch_size = 12 #
        test_data = TensorDataset(test_input_ids, test_attention_mask)
        
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
    
    elif MODEL == "modern-large":
        model = conspiracyModelLarge.from_pretrained('ypesk/frugal-ai-EURECOM-modern-large-fullset')
        model = model.to(device)
        tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-large")
            
        test_texts = [t['quote'] for t in test_dataset]
    
        MAX_LEN = 256 #1024 # < m some tweets will be truncated
        
        tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
        test_input_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['attention_mask']
        
        test_input_ids = torch.tensor(test_input_ids)
        test_attention_mask = torch.tensor(test_attention_mask)
    
        batch_size = 12 #
        test_data = TensorDataset(test_input_ids, test_attention_mask)
        
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
    
    elif MODEL == "gte-base":
        model = gteModel.from_pretrained("ypesk/frugal-ai-EURECOM-gte-base-fullset")
        model = model.to(device)
        tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5')
            
        test_texts = [t['quote'] for t in test_dataset]
    
        MAX_LEN = 256 #1024 # < m some tweets will be truncated
        
        tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
        test_input_ids, test_attention_mask, test_token_type_ids = tokenized_test['input_ids'], tokenized_test['attention_mask'], tokenized_test['token_type_ids']
        
        test_input_ids = torch.tensor(test_input_ids)
        test_attention_mask = torch.tensor(test_attention_mask)
        test_token_type_ids = torch.tensor(test_token_type_ids)
        
        batch_size = 12 #
        test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
        
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
    
    elif MODEL == "gte-large":
        model = gteModelLarge.from_pretrained("ypesk/frugal-ai-EURECOM-gte-large-fullset")
        model = model.to(device)
        tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-large-en-v1.5')
            
        test_texts = [t['quote'] for t in test_dataset]
    
        MAX_LEN = 256 #1024 # < m some tweets will be truncated
        
        tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
        test_input_ids, test_attention_mask, test_token_type_ids = tokenized_test['input_ids'], tokenized_test['attention_mask'], tokenized_test['token_type_ids']
        
        test_input_ids = torch.tensor(test_input_ids)
        test_attention_mask = torch.tensor(test_attention_mask)
        test_token_type_ids = torch.tensor(test_token_type_ids)
        
        batch_size = 12 #
        test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
        
        test_sampler = SequentialSampler(test_data)
        test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)



    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    predictions = []
    model.eval()
    for batch in tqdm(test_dataloader):
        batch = tuple(t.to(device) for t in batch)
        with torch.no_grad():
            if MODEL =="mlp":
                b_texts = batch[0]
                logits = model(b_texts)
            elif MODEL == "modern-base" or MODEL=="modern-large":
                b_input_ids, b_input_mask = batch
                logits = model(b_input_ids, b_input_mask)
            elif MODEL == "gte-base" or MODEL=="gte-large" or MODEL=="ct":
                b_input_ids, b_input_mask, b_token_type_ids = batch
                logits = model(b_input_ids, b_input_mask, b_token_type_ids)
                
        logits = logits.detach().cpu().numpy()
        predictions.extend(logits.argmax(1))        
    
    true_labels = test_dataset["label"]   
    # Make random predictions (placeholder for actual model inference)
    #true_labels = test_dataset["label"]
    #predictions = [random.randint(0, 7) for _ in range(len(true_labels))]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results