Spaces:
Sleeping
Sleeping
File size: 15,265 Bytes
4d6e8c2 136719e 4d8b8b9 b4c7827 3a019fe 4d8b8b9 7b05291 4d8b8b9 4d6e8c2 2e69c42 1c33274 70f5f26 b18c63e 8ff37b6 2e69c42 b18c63e 2e69c42 b18c63e 2e69c42 b18c63e 2e69c42 b18c63e 435ab1a b18c63e 435ab1a 2e69c42 b18c63e 435ab1a b18c63e 435ab1a 2e69c42 435ab1a b18c63e 435ab1a 2e69c42 435ab1a 2e69c42 435ab1a 2e69c42 435ab1a 2e69c42 b18c63e 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 e71bf8c 4d6e8c2 76fccaf 70f5f26 b18c63e 2e69c42 b18c63e 435ab1a b18c63e 2e69c42 b18c63e 2e69c42 8ff37b6 2e69c42 b18c63e 5414c47 b18c63e 5414c47 b18c63e 435ab1a 2e69c42 435ab1a 2e69c42 435ab1a 2e69c42 435ab1a 2e69c42 435ab1a 5414c47 435ab1a 371be94 b18c63e b4c7827 8ff37b6 5414c47 bea7c94 830a067 bea7c94 435ab1a 80cfa93 435ab1a bea7c94 5414c47 2e69c42 5414c47 4d6e8c2 5414c47 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
from tqdm import tqdm, trange
from sentence_transformers import SentenceTransformer
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertForPreTraining, BertModel, AutoTokenizer, AutoModel, ModernBertForSequenceClassification, BertForSequenceClassification, RobertaForSequenceClassification
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Submission 2: SBERT+MLP"
ROUTE = "/text"
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
MODEL = "mlp" #sk, mlp, ct, modern-base, modern-large, gte-base, gte-large
class ConspiracyClassification768(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes=8):
super().__init__()
self.h1 = nn.Linear(768, 100)
self.h2 = nn.Linear(100, 100)
self.h3 = nn.Linear(100, 100)
self.h4 = nn.Linear(100, 50)
self.h5 = nn.Linear(50, num_classes)
self.dropout = nn.Dropout(0.2)
self.activation = nn.ReLU()
def forward(self, input_texts):
outputs = self.h1(input_texts)
outputs = self.activation(outputs)
outputs = self.dropout(outputs)
outputs = self.h2(outputs)
outputs = self.activation(outputs)
outputs = self.dropout(outputs)
outputs = self.h3(outputs)
outputs = self.activation(outputs)
outputs = self.dropout(outputs)
outputs = self.h4(outputs)
outputs = self.activation(outputs)
outputs = self.dropout(outputs)
outputs = self.h5(outputs)
return outputs
class CTBERT(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes=8):
super().__init__()
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
def forward(self, input_ids, input_mask, token_type_ids):
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
logits = outputs[1]
return logits
class conspiracyModelBase(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes=8):
super().__init__()
self.n_classes = num_classes
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-base', num_labels=num_classes)
def forward(self, input_ids, input_mask):
outputs = self.bert(input_ids = input_ids, attention_mask = input_mask)
return outputs.logits
class conspiracyModelLarge(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes=8):
super().__init__()
self.n_classes = num_classes
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-large', num_labels=num_classes)
def forward(self, input_ids, input_mask):
outputs = self.bert(input_ids = input_ids, attention_mask = input_mask)
return outputs.logits
class gteModelLarge(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes=8):
super().__init__()
self.n_classes = num_classes
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
self.cls = nn.Linear(1024, num_classes)
def forward(self, input_ids, input_mask, input_type_ids):
outputs = self.gte(input_ids = input_ids, attention_mask = input_mask, token_type_ids = input_type_ids)
embeddings = outputs.last_hidden_state[:, 0]
logits = self.cls(embeddings)
return logits
class gteModel(
nn.Module,
PyTorchModelHubMixin,
# optionally, you can add metadata which gets pushed to the model card
):
def __init__(self, num_classes=8):
super().__init__()
self.n_classes = num_classes
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
self.cls = nn.Linear(768, num_classes)
def forward(self, input_ids, input_mask, input_type_ids):
outputs = self.gte(input_ids = input_ids, attention_mask = input_mask, token_type_ids = input_type_ids)
embeddings = outputs.last_hidden_state[:, 0]
logits = self.cls(embeddings)
return logits
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
test_dataset = dataset["test"]
if MODEL =="mlp":
model = ConspiracyClassification768.from_pretrained("ypesk/frugal-ai-EURECOM-mlp-768-fullset")
model = model.to(device)
emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large")
batch_size = 6
test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset]))
test_data = TensorDataset(test_texts)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
elif MODEL == "sk":
emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large")
batch_size = 512
test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset]))
test_data = TensorDataset(test_texts)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
model = pickle.load(open('../svm.pkl', "rb"))
elif MODEL == "ct":
model = CTBERT.from_pretrained("ypesk/frugal-ai-EURECOM-ct-bert-baseline")
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert-fullset')
test_texts = [t['quote'] for t in test_dataset]
MAX_LEN = 256 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
test_token_type_ids = torch.tensor(test_token_type_ids)
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
batch_size = 12 #
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
elif MODEL == "modern-base":
model = conspiracyModelBase.from_pretrained("ypesk/frugal-ai-EURECOM-modern-base-fullset")
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
test_texts = [t['quote'] for t in test_dataset]
MAX_LEN = 256 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['attention_mask']
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
batch_size = 12 #
test_data = TensorDataset(test_input_ids, test_attention_mask)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
elif MODEL == "modern-large":
model = conspiracyModelLarge.from_pretrained('ypesk/frugal-ai-EURECOM-modern-large-fullset')
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-large")
test_texts = [t['quote'] for t in test_dataset]
MAX_LEN = 256 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['attention_mask']
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
batch_size = 12 #
test_data = TensorDataset(test_input_ids, test_attention_mask)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
elif MODEL == "gte-base":
model = gteModel.from_pretrained("ypesk/frugal-ai-EURECOM-gte-base-fullset")
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5')
test_texts = [t['quote'] for t in test_dataset]
MAX_LEN = 256 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_attention_mask, test_token_type_ids = tokenized_test['input_ids'], tokenized_test['attention_mask'], tokenized_test['token_type_ids']
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
test_token_type_ids = torch.tensor(test_token_type_ids)
batch_size = 12 #
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
elif MODEL == "gte-large":
model = gteModelLarge.from_pretrained("ypesk/frugal-ai-EURECOM-gte-large-fullset")
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-large-en-v1.5')
test_texts = [t['quote'] for t in test_dataset]
MAX_LEN = 256 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_attention_mask, test_token_type_ids = tokenized_test['input_ids'], tokenized_test['attention_mask'], tokenized_test['token_type_ids']
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
test_token_type_ids = torch.tensor(test_token_type_ids)
batch_size = 12 #
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
predictions = []
model.eval()
for batch in tqdm(test_dataloader):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
if MODEL =="mlp":
b_texts = batch[0]
logits = model(b_texts)
elif MODEL == "modern-base" or MODEL=="modern-large":
b_input_ids, b_input_mask = batch
logits = model(b_input_ids, b_input_mask)
elif MODEL == "gte-base" or MODEL=="gte-large" or MODEL=="ct":
b_input_ids, b_input_mask, b_token_type_ids = batch
logits = model(b_input_ids, b_input_mask, b_token_type_ids)
logits = logits.detach().cpu().numpy()
predictions.extend(logits.argmax(1))
true_labels = test_dataset["label"]
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |