Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +62 -3
tasks/text.py
CHANGED
@@ -9,7 +9,7 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
@router.post(ROUTE, tags=["Text Task"],
|
@@ -55,10 +55,69 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
#--------------------------------------------------------------------------------------------
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Make random predictions (placeholder for actual model inference)
|
60 |
-
true_labels = test_dataset["label"]
|
61 |
-
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
+
DESCRIPTION = "First Baseline"
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
@router.post(ROUTE, tags=["Text Task"],
|
|
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
#--------------------------------------------------------------------------------------------
|
58 |
+
class CovidTwitterBertClassifier(nn.Module):
|
59 |
|
60 |
+
def __init__(self, n_classes):
|
61 |
+
super().__init__()
|
62 |
+
self.n_classes = n_classes
|
63 |
+
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
64 |
+
self.bert.cls.seq_relationship = nn.Linear(1024, n_classes)
|
65 |
+
|
66 |
+
self.sigmoid = nn.Sigmoid()
|
67 |
+
|
68 |
+
def forward(self, input_ids, token_type_ids, input_mask):
|
69 |
+
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
|
70 |
+
|
71 |
+
logits = outputs[1]
|
72 |
+
|
73 |
+
return logits
|
74 |
+
|
75 |
+
model = CovidTwitterBertClassifier(8)
|
76 |
+
|
77 |
+
model.to(device)
|
78 |
+
model.load_state_dict(torch.load('model.pth'))
|
79 |
+
model.eval()
|
80 |
+
|
81 |
+
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
|
83 |
+
|
84 |
+
test_texts = [t['quote'] for t in data_test]
|
85 |
+
|
86 |
+
MAX_LEN = 128 #1024 # < m some tweets will be truncated
|
87 |
+
|
88 |
+
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
|
89 |
+
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
|
90 |
+
test_token_type_ids = torch.tensor(test_token_type_ids)
|
91 |
+
|
92 |
+
test_input_ids = torch.tensor(test_input_ids)
|
93 |
+
test_attention_mask = torch.tensor(test_attention_mask)
|
94 |
+
|
95 |
+
batch_size = 8 #
|
96 |
+
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
|
97 |
+
|
98 |
+
test_sampler = SequentialSampler(test_data)
|
99 |
+
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
|
100 |
+
|
101 |
+
predictions = []
|
102 |
+
for step, batch in enumerate(test_dataloader):
|
103 |
+
|
104 |
+
# Add batch to GPU
|
105 |
+
batch = tuple(t.to(device) for t in batch)
|
106 |
+
|
107 |
+
b_input_ids, b_input_mask, b_token_type_ids = batch
|
108 |
+
with torch.no_grad():
|
109 |
+
logits = model(b_input_ids, b_token_type_ids, b_input_mask)
|
110 |
+
|
111 |
+
logits = logits.detach().cpu().numpy()
|
112 |
+
predictions.extend(logits.argmax(1))
|
113 |
+
for l in ground_truth:
|
114 |
+
labels_sep.append(l)
|
115 |
+
|
116 |
+
|
117 |
+
true_labels = test_dataset["label"]
|
118 |
# Make random predictions (placeholder for actual model inference)
|
119 |
+
#true_labels = test_dataset["label"]
|
120 |
+
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
121 |
|
122 |
#--------------------------------------------------------------------------------------------
|
123 |
# YOUR MODEL INFERENCE STOPS HERE
|