Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +86 -41
tasks/text.py
CHANGED
@@ -21,6 +21,63 @@ router = APIRouter()
|
|
21 |
DESCRIPTION = "First Baseline"
|
22 |
ROUTE = "/text"
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
@router.post(ROUTE, tags=["Text Task"],
|
25 |
description=DESCRIPTION)
|
26 |
async def evaluate_text(request: TextEvaluationRequest):
|
@@ -64,53 +121,41 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
64 |
# YOUR MODEL INFERENCE CODE HERE
|
65 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
66 |
#--------------------------------------------------------------------------------------------
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
def __init__(self, num_classes):
|
73 |
-
super().__init__()
|
74 |
-
self.n_classes = num_classes
|
75 |
-
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
76 |
-
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
|
77 |
-
|
78 |
-
self.sigmoid = nn.Sigmoid()
|
79 |
-
|
80 |
-
def forward(self, input_ids, token_type_ids, input_mask):
|
81 |
-
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
|
82 |
-
|
83 |
-
logits = outputs[1]
|
84 |
-
|
85 |
-
return logits
|
86 |
-
model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline")
|
87 |
-
model.eval()
|
88 |
-
|
89 |
-
|
90 |
-
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
|
91 |
-
|
92 |
-
test_texts = [t['quote'] for t in test_dataset]
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
|
|
|
109 |
predictions = []
|
110 |
-
c=0
|
111 |
for batch in tqdm(test_dataloader):
|
112 |
-
print(c)
|
113 |
-
c+=1
|
114 |
|
115 |
b_input_ids, b_input_mask, b_token_type_ids = batch
|
116 |
with torch.no_grad():
|
|
|
21 |
DESCRIPTION = "First Baseline"
|
22 |
ROUTE = "/text"
|
23 |
|
24 |
+
|
25 |
+
MODEL = "mlp" #mlp, ct, modern
|
26 |
+
|
27 |
+
class ConspiracyClassification(
|
28 |
+
nn.Module,
|
29 |
+
PyTorchModelHubMixin,
|
30 |
+
# optionally, you can add metadata which gets pushed to the model card
|
31 |
+
):
|
32 |
+
def __init__(self, num_classes):
|
33 |
+
super().__init__()
|
34 |
+
self.h1 = nn.Linear(384, 100)
|
35 |
+
self.h2 = nn.Linear(100, 100)
|
36 |
+
self.h3 = nn.Linear(100, 100)
|
37 |
+
self.h4 = nn.Linear(100, 50)
|
38 |
+
self.h5 = nn.Linear(50, num_classes)
|
39 |
+
self.dropout = nn.Dropout(0.2)
|
40 |
+
self.activation = nn.ReLU()
|
41 |
+
|
42 |
+
|
43 |
+
def forward(self, input_texts):
|
44 |
+
outputs = self.h1(input_texts)
|
45 |
+
outputs = self.activation(outputs)
|
46 |
+
outputs = self.dropout(outputs)
|
47 |
+
outputs = self.h2(outputs)
|
48 |
+
outputs = self.activation(outputs)
|
49 |
+
outputs = self.dropout(outputs)
|
50 |
+
outputs = self.h3(outputs)
|
51 |
+
outputs = self.activation(outputs)
|
52 |
+
outputs = self.dropout(outputs)
|
53 |
+
outputs = self.h4(outputs)
|
54 |
+
outputs = self.activation(outputs)
|
55 |
+
outputs = self.dropout(outputs)
|
56 |
+
outputs = self.h5(outputs)
|
57 |
+
|
58 |
+
return outputs
|
59 |
+
|
60 |
+
class CovidTwitterBertClassifier(
|
61 |
+
nn.Module,
|
62 |
+
PyTorchModelHubMixin,
|
63 |
+
# optionally, you can add metadata which gets pushed to the model card
|
64 |
+
):
|
65 |
+
def __init__(self, num_classes):
|
66 |
+
super().__init__()
|
67 |
+
self.n_classes = num_classes
|
68 |
+
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
69 |
+
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
|
70 |
+
|
71 |
+
self.sigmoid = nn.Sigmoid()
|
72 |
+
|
73 |
+
def forward(self, input_ids, token_type_ids, input_mask):
|
74 |
+
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
|
75 |
+
|
76 |
+
logits = outputs[1]
|
77 |
+
|
78 |
+
return logits
|
79 |
+
|
80 |
+
|
81 |
@router.post(ROUTE, tags=["Text Task"],
|
82 |
description=DESCRIPTION)
|
83 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
|
121 |
# YOUR MODEL INFERENCE CODE HERE
|
122 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
123 |
#--------------------------------------------------------------------------------------------
|
124 |
+
if MODEL =="mlp":
|
125 |
+
model = ConspiracyClassification.from_pretrained("ypesk/frugal-ai-mlp-baseline")
|
126 |
+
|
127 |
+
emb_model = SentenceTransformer("paraphrase-MiniLM-L3-v2")
|
128 |
+
batch_size = 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset]))
|
131 |
+
test_data = TensorDataset(test_texts)
|
132 |
+
test_sampler = SequentialSampler(test_data)
|
133 |
+
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
|
134 |
+
|
135 |
+
elif MODEL == "ct":
|
136 |
+
model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline")
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
|
138 |
+
|
139 |
+
test_texts = [t['quote'] for t in test_dataset]
|
140 |
|
141 |
+
MAX_LEN = 256 #1024 # < m some tweets will be truncated
|
142 |
+
|
143 |
+
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
|
144 |
+
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
|
145 |
+
test_token_type_ids = torch.tensor(test_token_type_ids)
|
146 |
+
|
147 |
+
test_input_ids = torch.tensor(test_input_ids)
|
148 |
+
test_attention_mask = torch.tensor(test_attention_mask)
|
149 |
|
150 |
+
batch_size = 12 #
|
151 |
+
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
|
152 |
+
|
153 |
+
test_sampler = SequentialSampler(test_data)
|
154 |
+
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
|
155 |
|
156 |
+
model.eval()
|
157 |
predictions = []
|
|
|
158 |
for batch in tqdm(test_dataloader):
|
|
|
|
|
159 |
|
160 |
b_input_ids, b_input_mask, b_token_type_ids = batch
|
161 |
with torch.no_grad():
|