Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
import os | |
import cv2 | |
import numpy as np | |
import scipy.ndimage | |
from PIL import Image | |
from tqdm import tqdm | |
import torch | |
import torchvision | |
import gc | |
try: | |
from model.modules.flow_comp_raft import RAFT_bi | |
from model.recurrent_flow_completion import RecurrentFlowCompleteNet | |
from model.propainter import InpaintGenerator | |
from utils.download_util import load_file_from_url | |
from core.utils import to_tensors | |
from model.misc import get_device | |
except: | |
from propainter.model.modules.flow_comp_raft import RAFT_bi | |
from propainter.model.recurrent_flow_completion import RecurrentFlowCompleteNet | |
from propainter.model.propainter import InpaintGenerator | |
from propainter.utils.download_util import load_file_from_url | |
from propainter.core.utils import to_tensors | |
from propainter.model.misc import get_device | |
import warnings | |
warnings.filterwarnings("ignore") | |
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/' | |
MaxSideThresh = 960 | |
# resize frames | |
def resize_frames(frames, size=None): | |
if size is not None: | |
out_size = size | |
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) | |
frames = [f.resize(process_size) for f in frames] | |
else: | |
out_size = frames[0].size | |
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) | |
if not out_size == process_size: | |
frames = [f.resize(process_size) for f in frames] | |
return frames, process_size, out_size | |
# read frames from video | |
def read_frame_from_videos(frame_root, video_length): | |
if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path | |
video_name = os.path.basename(frame_root)[:-4] | |
vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', end_pts=video_length) # RGB | |
frames = list(vframes.numpy()) | |
frames = [Image.fromarray(f) for f in frames] | |
fps = info['video_fps'] | |
nframes = len(frames) | |
else: | |
video_name = os.path.basename(frame_root) | |
frames = [] | |
fr_lst = sorted(os.listdir(frame_root)) | |
for fr in fr_lst: | |
frame = cv2.imread(os.path.join(frame_root, fr)) | |
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
frames.append(frame) | |
fps = None | |
nframes = len(frames) | |
size = frames[0].size | |
return frames, fps, size, video_name, nframes | |
def binary_mask(mask, th=0.1): | |
mask[mask>th] = 1 | |
mask[mask<=th] = 0 | |
return mask | |
# read frame-wise masks | |
def read_mask(mpath, frames_len, size, flow_mask_dilates=8, mask_dilates=5): | |
masks_img = [] | |
masks_dilated = [] | |
flow_masks = [] | |
if mpath.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path | |
masks_img = [Image.open(mpath)] | |
elif mpath.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path | |
cap = cv2.VideoCapture(mpath) | |
if not cap.isOpened(): | |
print("Error: Could not open video.") | |
exit() | |
idx = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if(idx >= frames_len): | |
break | |
masks_img.append(Image.fromarray(frame)) | |
idx += 1 | |
cap.release() | |
else: | |
mnames = sorted(os.listdir(mpath)) | |
for mp in mnames: | |
masks_img.append(Image.open(os.path.join(mpath, mp))) | |
# print(mp) | |
for mask_img in masks_img: | |
if size is not None: | |
mask_img = mask_img.resize(size, Image.NEAREST) | |
mask_img = np.array(mask_img.convert('L')) | |
# Dilate 8 pixel so that all known pixel is trustworthy | |
if flow_mask_dilates > 0: | |
flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8) | |
else: | |
flow_mask_img = binary_mask(mask_img).astype(np.uint8) | |
# Close the small holes inside the foreground objects | |
# flow_mask_img = cv2.morphologyEx(flow_mask_img, cv2.MORPH_CLOSE, np.ones((21, 21),np.uint8)).astype(bool) | |
# flow_mask_img = scipy.ndimage.binary_fill_holes(flow_mask_img).astype(np.uint8) | |
flow_masks.append(Image.fromarray(flow_mask_img * 255)) | |
if mask_dilates > 0: | |
mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8) | |
else: | |
mask_img = binary_mask(mask_img).astype(np.uint8) | |
masks_dilated.append(Image.fromarray(mask_img * 255)) | |
if len(masks_img) == 1: | |
flow_masks = flow_masks * frames_len | |
masks_dilated = masks_dilated * frames_len | |
return flow_masks, masks_dilated | |
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1): | |
ref_index = [] | |
if ref_num == -1: | |
for i in range(0, length, ref_stride): | |
if i not in neighbor_ids: | |
ref_index.append(i) | |
else: | |
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2)) | |
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2)) | |
for i in range(start_idx, end_idx, ref_stride): | |
if i not in neighbor_ids: | |
if len(ref_index) > ref_num: | |
break | |
ref_index.append(i) | |
return ref_index | |
class Propainter: | |
def __init__( | |
self, propainter_model_dir, device): | |
self.device = device | |
############################################## | |
# set up RAFT and flow competition model | |
############################################## | |
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'), | |
model_dir=propainter_model_dir, progress=True, file_name=None) | |
self.fix_raft = RAFT_bi(ckpt_path, device) | |
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), | |
model_dir=propainter_model_dir, progress=True, file_name=None) | |
self.fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path) | |
for p in self.fix_flow_complete.parameters(): | |
p.requires_grad = False | |
self.fix_flow_complete.to(device) | |
self.fix_flow_complete.eval() | |
############################################## | |
# set up ProPainter model | |
############################################## | |
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'), | |
model_dir=propainter_model_dir, progress=True, file_name=None) | |
self.model = InpaintGenerator(model_path=ckpt_path).to(device) | |
self.model.eval() | |
def forward(self, video, mask, output_path, resize_ratio=0.6, video_length=2, height=-1, width=-1, | |
mask_dilation=4, ref_stride=10, neighbor_length=10, subvideo_length=80, | |
raft_iter=20, save_fps=24, save_frames=False, fp16=True): | |
# Use fp16 precision during inference to reduce running memory cost | |
use_half = True if fp16 else False | |
if self.device == torch.device('cpu'): | |
use_half = False | |
################ read input video ################ | |
frames, fps, size, video_name, nframes = read_frame_from_videos(video, video_length) | |
frames = frames[:nframes] | |
if not width == -1 and not height == -1: | |
size = (width, height) | |
longer_edge = max(size[0], size[1]) | |
if(longer_edge > MaxSideThresh): | |
scale = MaxSideThresh / longer_edge | |
resize_ratio = resize_ratio * scale | |
if not resize_ratio == 1.0: | |
size = (int(resize_ratio * size[0]), int(resize_ratio * size[1])) | |
frames, size, out_size = resize_frames(frames, size) | |
fps = save_fps if fps is None else fps | |
################ read mask ################ | |
frames_len = len(frames) | |
flow_masks, masks_dilated = read_mask(mask, frames_len, size, | |
flow_mask_dilates=mask_dilation, | |
mask_dilates=mask_dilation) | |
flow_masks = flow_masks[:nframes] | |
masks_dilated = masks_dilated[:nframes] | |
w, h = size | |
################ adjust input ################ | |
frames_len = min(len(frames), len(masks_dilated)) | |
frames = frames[:frames_len] | |
flow_masks = flow_masks[:frames_len] | |
masks_dilated = masks_dilated[:frames_len] | |
ori_frames_inp = [np.array(f).astype(np.uint8) for f in frames] | |
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1 | |
flow_masks = to_tensors()(flow_masks).unsqueeze(0) | |
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0) | |
frames, flow_masks, masks_dilated = frames.to(self.device), flow_masks.to(self.device), masks_dilated.to(self.device) | |
############################################## | |
# ProPainter inference | |
############################################## | |
video_length = frames.size(1) | |
print(f'Priori generating: [{video_length} frames]...') | |
with torch.no_grad(): | |
# ---- compute flow ---- | |
new_longer_edge = max(frames.size(-1), frames.size(-2)) | |
if new_longer_edge <= 640: | |
short_clip_len = 12 | |
elif new_longer_edge <= 720: | |
short_clip_len = 8 | |
elif new_longer_edge <= 1280: | |
short_clip_len = 4 | |
else: | |
short_clip_len = 2 | |
# use fp32 for RAFT | |
if frames.size(1) > short_clip_len: | |
gt_flows_f_list, gt_flows_b_list = [], [] | |
for f in range(0, video_length, short_clip_len): | |
end_f = min(video_length, f + short_clip_len) | |
if f == 0: | |
flows_f, flows_b = self.fix_raft(frames[:,f:end_f], iters=raft_iter) | |
else: | |
flows_f, flows_b = self.fix_raft(frames[:,f-1:end_f], iters=raft_iter) | |
gt_flows_f_list.append(flows_f) | |
gt_flows_b_list.append(flows_b) | |
torch.cuda.empty_cache() | |
gt_flows_f = torch.cat(gt_flows_f_list, dim=1) | |
gt_flows_b = torch.cat(gt_flows_b_list, dim=1) | |
gt_flows_bi = (gt_flows_f, gt_flows_b) | |
else: | |
gt_flows_bi = self.fix_raft(frames, iters=raft_iter) | |
torch.cuda.empty_cache() | |
torch.cuda.empty_cache() | |
gc.collect() | |
if use_half: | |
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half() | |
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half()) | |
self.fix_flow_complete = self.fix_flow_complete.half() | |
self.model = self.model.half() | |
# ---- complete flow ---- | |
flow_length = gt_flows_bi[0].size(1) | |
if flow_length > subvideo_length: | |
pred_flows_f, pred_flows_b = [], [] | |
pad_len = 5 | |
for f in range(0, flow_length, subvideo_length): | |
s_f = max(0, f - pad_len) | |
e_f = min(flow_length, f + subvideo_length + pad_len) | |
pad_len_s = max(0, f) - s_f | |
pad_len_e = e_f - min(flow_length, f + subvideo_length) | |
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow( | |
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), | |
flow_masks[:, s_f:e_f+1]) | |
pred_flows_bi_sub = self.fix_flow_complete.combine_flow( | |
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), | |
pred_flows_bi_sub, | |
flow_masks[:, s_f:e_f+1]) | |
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e]) | |
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e]) | |
torch.cuda.empty_cache() | |
pred_flows_f = torch.cat(pred_flows_f, dim=1) | |
pred_flows_b = torch.cat(pred_flows_b, dim=1) | |
pred_flows_bi = (pred_flows_f, pred_flows_b) | |
else: | |
pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks) | |
pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks) | |
torch.cuda.empty_cache() | |
torch.cuda.empty_cache() | |
gc.collect() | |
masks_dilated_ori = masks_dilated.clone() | |
# ---- Pre-propagation ---- | |
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation | |
if(len(frames[0]))>subvideo_length_img_prop: # perform propagation only when length of frames is larger than subvideo_length_img_prop | |
sample_rate = len(frames[0])//(subvideo_length_img_prop//2) | |
index_sample = list(range(0, len(frames[0]), sample_rate)) | |
sample_frames = torch.stack([frames[0][i].to(torch.float32) for i in index_sample]).unsqueeze(0) # use fp32 for RAFT | |
sample_masks_dilated = torch.stack([masks_dilated[0][i] for i in index_sample]).unsqueeze(0) | |
sample_flow_masks = torch.stack([flow_masks[0][i] for i in index_sample]).unsqueeze(0) | |
## recompute flow for sampled frames | |
# use fp32 for RAFT | |
sample_video_length = sample_frames.size(1) | |
if sample_frames.size(1) > short_clip_len: | |
gt_flows_f_list, gt_flows_b_list = [], [] | |
for f in range(0, sample_video_length, short_clip_len): | |
end_f = min(sample_video_length, f + short_clip_len) | |
if f == 0: | |
flows_f, flows_b = self.fix_raft(sample_frames[:,f:end_f], iters=raft_iter) | |
else: | |
flows_f, flows_b = self.fix_raft(sample_frames[:,f-1:end_f], iters=raft_iter) | |
gt_flows_f_list.append(flows_f) | |
gt_flows_b_list.append(flows_b) | |
torch.cuda.empty_cache() | |
gt_flows_f = torch.cat(gt_flows_f_list, dim=1) | |
gt_flows_b = torch.cat(gt_flows_b_list, dim=1) | |
sample_gt_flows_bi = (gt_flows_f, gt_flows_b) | |
else: | |
sample_gt_flows_bi = self.fix_raft(sample_frames, iters=raft_iter) | |
torch.cuda.empty_cache() | |
torch.cuda.empty_cache() | |
gc.collect() | |
if use_half: | |
sample_frames, sample_flow_masks, sample_masks_dilated = sample_frames.half(), sample_flow_masks.half(), sample_masks_dilated.half() | |
sample_gt_flows_bi = (sample_gt_flows_bi[0].half(), sample_gt_flows_bi[1].half()) | |
# ---- complete flow ---- | |
flow_length = sample_gt_flows_bi[0].size(1) | |
if flow_length > subvideo_length: | |
pred_flows_f, pred_flows_b = [], [] | |
pad_len = 5 | |
for f in range(0, flow_length, subvideo_length): | |
s_f = max(0, f - pad_len) | |
e_f = min(flow_length, f + subvideo_length + pad_len) | |
pad_len_s = max(0, f) - s_f | |
pad_len_e = e_f - min(flow_length, f + subvideo_length) | |
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow( | |
(sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]), | |
sample_flow_masks[:, s_f:e_f+1]) | |
pred_flows_bi_sub = self.fix_flow_complete.combine_flow( | |
(sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]), | |
pred_flows_bi_sub, | |
sample_flow_masks[:, s_f:e_f+1]) | |
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e]) | |
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e]) | |
torch.cuda.empty_cache() | |
pred_flows_f = torch.cat(pred_flows_f, dim=1) | |
pred_flows_b = torch.cat(pred_flows_b, dim=1) | |
sample_pred_flows_bi = (pred_flows_f, pred_flows_b) | |
else: | |
sample_pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(sample_gt_flows_bi, sample_flow_masks) | |
sample_pred_flows_bi = self.fix_flow_complete.combine_flow(sample_gt_flows_bi, sample_pred_flows_bi, sample_flow_masks) | |
torch.cuda.empty_cache() | |
torch.cuda.empty_cache() | |
gc.collect() | |
masked_frames = sample_frames * (1 - sample_masks_dilated) | |
if sample_video_length > subvideo_length_img_prop: | |
updated_frames, updated_masks = [], [] | |
pad_len = 10 | |
for f in range(0, sample_video_length, subvideo_length_img_prop): | |
s_f = max(0, f - pad_len) | |
e_f = min(sample_video_length, f + subvideo_length_img_prop + pad_len) | |
pad_len_s = max(0, f) - s_f | |
pad_len_e = e_f - min(sample_video_length, f + subvideo_length_img_prop) | |
b, t, _, _, _ = sample_masks_dilated[:, s_f:e_f].size() | |
pred_flows_bi_sub = (sample_pred_flows_bi[0][:, s_f:e_f-1], sample_pred_flows_bi[1][:, s_f:e_f-1]) | |
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], | |
pred_flows_bi_sub, | |
sample_masks_dilated[:, s_f:e_f], | |
'nearest') | |
updated_frames_sub = sample_frames[:, s_f:e_f] * (1 - sample_masks_dilated[:, s_f:e_f]) + \ | |
prop_imgs_sub.view(b, t, 3, h, w) * sample_masks_dilated[:, s_f:e_f] | |
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w) | |
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
torch.cuda.empty_cache() | |
updated_frames = torch.cat(updated_frames, dim=1) | |
updated_masks = torch.cat(updated_masks, dim=1) | |
else: | |
b, t, _, _, _ = sample_masks_dilated.size() | |
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, sample_pred_flows_bi, sample_masks_dilated, 'nearest') | |
updated_frames = sample_frames * (1 - sample_masks_dilated) + prop_imgs.view(b, t, 3, h, w) * sample_masks_dilated | |
updated_masks = updated_local_masks.view(b, t, 1, h, w) | |
torch.cuda.empty_cache() | |
## replace input frames/masks with updated frames/masks | |
for i,index in enumerate(index_sample): | |
frames[0][index] = updated_frames[0][i] | |
masks_dilated[0][index] = updated_masks[0][i] | |
# ---- frame-by-frame image propagation ---- | |
masked_frames = frames * (1 - masks_dilated) | |
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation | |
if video_length > subvideo_length_img_prop: | |
updated_frames, updated_masks = [], [] | |
pad_len = 10 | |
for f in range(0, video_length, subvideo_length_img_prop): | |
s_f = max(0, f - pad_len) | |
e_f = min(video_length, f + subvideo_length_img_prop + pad_len) | |
pad_len_s = max(0, f) - s_f | |
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop) | |
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size() | |
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1]) | |
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], | |
pred_flows_bi_sub, | |
masks_dilated[:, s_f:e_f], | |
'nearest') | |
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \ | |
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f] | |
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w) | |
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e]) | |
torch.cuda.empty_cache() | |
updated_frames = torch.cat(updated_frames, dim=1) | |
updated_masks = torch.cat(updated_masks, dim=1) | |
else: | |
b, t, _, _, _ = masks_dilated.size() | |
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest') | |
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated | |
updated_masks = updated_local_masks.view(b, t, 1, h, w) | |
torch.cuda.empty_cache() | |
comp_frames = [None] * video_length | |
neighbor_stride = neighbor_length // 2 | |
if video_length > subvideo_length: | |
ref_num = subvideo_length // ref_stride | |
else: | |
ref_num = -1 | |
torch.cuda.empty_cache() | |
# ---- feature propagation + transformer ---- | |
for f in tqdm(range(0, video_length, neighbor_stride)): | |
neighbor_ids = [ | |
i for i in range(max(0, f - neighbor_stride), | |
min(video_length, f + neighbor_stride + 1)) | |
] | |
ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num) | |
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :] | |
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :] | |
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :] | |
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :]) | |
with torch.no_grad(): | |
# 1.0 indicates mask | |
l_t = len(neighbor_ids) | |
# pred_img = selected_imgs # results of image propagation | |
pred_img = self.model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t) | |
pred_img = pred_img.view(-1, 3, h, w) | |
## compose with input frames | |
pred_img = (pred_img + 1) / 2 | |
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255 | |
binary_masks = masks_dilated_ori[0, neighbor_ids, :, :, :].cpu().permute( | |
0, 2, 3, 1).numpy().astype(np.uint8) # use original mask | |
for i in range(len(neighbor_ids)): | |
idx = neighbor_ids[i] | |
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \ | |
+ ori_frames_inp[idx] * (1 - binary_masks[i]) | |
if comp_frames[idx] is None: | |
comp_frames[idx] = img | |
else: | |
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5 | |
comp_frames[idx] = comp_frames[idx].astype(np.uint8) | |
torch.cuda.empty_cache() | |
##save composed video## | |
comp_frames = [cv2.resize(f, out_size) for f in comp_frames] | |
writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), | |
fps, (comp_frames[0].shape[1],comp_frames[0].shape[0])) | |
for f in range(video_length): | |
frame = comp_frames[f].astype(np.uint8) | |
writer.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
writer.release() | |
torch.cuda.empty_cache() | |
return output_path | |
if __name__ == '__main__': | |
device = get_device() | |
propainter_model_dir = "weights/propainter" | |
propainter = Propainter(propainter_model_dir, device=device) | |
video = "examples/example1/video.mp4" | |
mask = "examples/example1/mask.mp4" | |
output = "results/priori.mp4" | |
res = propainter.forward(video, mask, output) | |