Spaces:
Running
on
L40S
Running
on
L40S
File size: 25,869 Bytes
8eb8300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np
import scipy.ndimage
from PIL import Image
from tqdm import tqdm
import torch
import torchvision
import gc
try:
from model.modules.flow_comp_raft import RAFT_bi
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from model.propainter import InpaintGenerator
from utils.download_util import load_file_from_url
from core.utils import to_tensors
from model.misc import get_device
except:
from propainter.model.modules.flow_comp_raft import RAFT_bi
from propainter.model.recurrent_flow_completion import RecurrentFlowCompleteNet
from propainter.model.propainter import InpaintGenerator
from propainter.utils.download_util import load_file_from_url
from propainter.core.utils import to_tensors
from propainter.model.misc import get_device
import warnings
warnings.filterwarnings("ignore")
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
MaxSideThresh = 960
# resize frames
def resize_frames(frames, size=None):
if size is not None:
out_size = size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
frames = [f.resize(process_size) for f in frames]
else:
out_size = frames[0].size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
if not out_size == process_size:
frames = [f.resize(process_size) for f in frames]
return frames, process_size, out_size
# read frames from video
def read_frame_from_videos(frame_root, video_length):
if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
video_name = os.path.basename(frame_root)[:-4]
vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', end_pts=video_length) # RGB
frames = list(vframes.numpy())
frames = [Image.fromarray(f) for f in frames]
fps = info['video_fps']
nframes = len(frames)
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frames.append(frame)
fps = None
nframes = len(frames)
size = frames[0].size
return frames, fps, size, video_name, nframes
def binary_mask(mask, th=0.1):
mask[mask>th] = 1
mask[mask<=th] = 0
return mask
# read frame-wise masks
def read_mask(mpath, frames_len, size, flow_mask_dilates=8, mask_dilates=5):
masks_img = []
masks_dilated = []
flow_masks = []
if mpath.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
masks_img = [Image.open(mpath)]
elif mpath.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
cap = cv2.VideoCapture(mpath)
if not cap.isOpened():
print("Error: Could not open video.")
exit()
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
if(idx >= frames_len):
break
masks_img.append(Image.fromarray(frame))
idx += 1
cap.release()
else:
mnames = sorted(os.listdir(mpath))
for mp in mnames:
masks_img.append(Image.open(os.path.join(mpath, mp)))
# print(mp)
for mask_img in masks_img:
if size is not None:
mask_img = mask_img.resize(size, Image.NEAREST)
mask_img = np.array(mask_img.convert('L'))
# Dilate 8 pixel so that all known pixel is trustworthy
if flow_mask_dilates > 0:
flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8)
else:
flow_mask_img = binary_mask(mask_img).astype(np.uint8)
# Close the small holes inside the foreground objects
# flow_mask_img = cv2.morphologyEx(flow_mask_img, cv2.MORPH_CLOSE, np.ones((21, 21),np.uint8)).astype(bool)
# flow_mask_img = scipy.ndimage.binary_fill_holes(flow_mask_img).astype(np.uint8)
flow_masks.append(Image.fromarray(flow_mask_img * 255))
if mask_dilates > 0:
mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8)
else:
mask_img = binary_mask(mask_img).astype(np.uint8)
masks_dilated.append(Image.fromarray(mask_img * 255))
if len(masks_img) == 1:
flow_masks = flow_masks * frames_len
masks_dilated = masks_dilated * frames_len
return flow_masks, masks_dilated
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
ref_index = []
if ref_num == -1:
for i in range(0, length, ref_stride):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
for i in range(start_idx, end_idx, ref_stride):
if i not in neighbor_ids:
if len(ref_index) > ref_num:
break
ref_index.append(i)
return ref_index
class Propainter:
def __init__(
self, propainter_model_dir, device):
self.device = device
##############################################
# set up RAFT and flow competition model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'),
model_dir=propainter_model_dir, progress=True, file_name=None)
self.fix_raft = RAFT_bi(ckpt_path, device)
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'),
model_dir=propainter_model_dir, progress=True, file_name=None)
self.fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
for p in self.fix_flow_complete.parameters():
p.requires_grad = False
self.fix_flow_complete.to(device)
self.fix_flow_complete.eval()
##############################################
# set up ProPainter model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'),
model_dir=propainter_model_dir, progress=True, file_name=None)
self.model = InpaintGenerator(model_path=ckpt_path).to(device)
self.model.eval()
def forward(self, video, mask, output_path, resize_ratio=0.6, video_length=2, height=-1, width=-1,
mask_dilation=4, ref_stride=10, neighbor_length=10, subvideo_length=80,
raft_iter=20, save_fps=24, save_frames=False, fp16=True):
# Use fp16 precision during inference to reduce running memory cost
use_half = True if fp16 else False
if self.device == torch.device('cpu'):
use_half = False
################ read input video ################
frames, fps, size, video_name, nframes = read_frame_from_videos(video, video_length)
frames = frames[:nframes]
if not width == -1 and not height == -1:
size = (width, height)
longer_edge = max(size[0], size[1])
if(longer_edge > MaxSideThresh):
scale = MaxSideThresh / longer_edge
resize_ratio = resize_ratio * scale
if not resize_ratio == 1.0:
size = (int(resize_ratio * size[0]), int(resize_ratio * size[1]))
frames, size, out_size = resize_frames(frames, size)
fps = save_fps if fps is None else fps
################ read mask ################
frames_len = len(frames)
flow_masks, masks_dilated = read_mask(mask, frames_len, size,
flow_mask_dilates=mask_dilation,
mask_dilates=mask_dilation)
flow_masks = flow_masks[:nframes]
masks_dilated = masks_dilated[:nframes]
w, h = size
################ adjust input ################
frames_len = min(len(frames), len(masks_dilated))
frames = frames[:frames_len]
flow_masks = flow_masks[:frames_len]
masks_dilated = masks_dilated[:frames_len]
ori_frames_inp = [np.array(f).astype(np.uint8) for f in frames]
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
flow_masks = to_tensors()(flow_masks).unsqueeze(0)
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
frames, flow_masks, masks_dilated = frames.to(self.device), flow_masks.to(self.device), masks_dilated.to(self.device)
##############################################
# ProPainter inference
##############################################
video_length = frames.size(1)
print(f'Priori generating: [{video_length} frames]...')
with torch.no_grad():
# ---- compute flow ----
new_longer_edge = max(frames.size(-1), frames.size(-2))
if new_longer_edge <= 640:
short_clip_len = 12
elif new_longer_edge <= 720:
short_clip_len = 8
elif new_longer_edge <= 1280:
short_clip_len = 4
else:
short_clip_len = 2
# use fp32 for RAFT
if frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_clip_len):
end_f = min(video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = self.fix_raft(frames[:,f:end_f], iters=raft_iter)
else:
flows_f, flows_b = self.fix_raft(frames[:,f-1:end_f], iters=raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = self.fix_raft(frames, iters=raft_iter)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
gc.collect()
if use_half:
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
self.fix_flow_complete = self.fix_flow_complete.half()
self.model = self.model.half()
# ---- complete flow ----
flow_length = gt_flows_bi[0].size(1)
if flow_length > subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + subvideo_length)
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = self.fix_flow_complete.combine_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
gc.collect()
masks_dilated_ori = masks_dilated.clone()
# ---- Pre-propagation ----
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
if(len(frames[0]))>subvideo_length_img_prop: # perform propagation only when length of frames is larger than subvideo_length_img_prop
sample_rate = len(frames[0])//(subvideo_length_img_prop//2)
index_sample = list(range(0, len(frames[0]), sample_rate))
sample_frames = torch.stack([frames[0][i].to(torch.float32) for i in index_sample]).unsqueeze(0) # use fp32 for RAFT
sample_masks_dilated = torch.stack([masks_dilated[0][i] for i in index_sample]).unsqueeze(0)
sample_flow_masks = torch.stack([flow_masks[0][i] for i in index_sample]).unsqueeze(0)
## recompute flow for sampled frames
# use fp32 for RAFT
sample_video_length = sample_frames.size(1)
if sample_frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, sample_video_length, short_clip_len):
end_f = min(sample_video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = self.fix_raft(sample_frames[:,f:end_f], iters=raft_iter)
else:
flows_f, flows_b = self.fix_raft(sample_frames[:,f-1:end_f], iters=raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
sample_gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
sample_gt_flows_bi = self.fix_raft(sample_frames, iters=raft_iter)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
gc.collect()
if use_half:
sample_frames, sample_flow_masks, sample_masks_dilated = sample_frames.half(), sample_flow_masks.half(), sample_masks_dilated.half()
sample_gt_flows_bi = (sample_gt_flows_bi[0].half(), sample_gt_flows_bi[1].half())
# ---- complete flow ----
flow_length = sample_gt_flows_bi[0].size(1)
if flow_length > subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + subvideo_length)
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow(
(sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]),
sample_flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = self.fix_flow_complete.combine_flow(
(sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
sample_flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
sample_pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
sample_pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(sample_gt_flows_bi, sample_flow_masks)
sample_pred_flows_bi = self.fix_flow_complete.combine_flow(sample_gt_flows_bi, sample_pred_flows_bi, sample_flow_masks)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
gc.collect()
masked_frames = sample_frames * (1 - sample_masks_dilated)
if sample_video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, sample_video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(sample_video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(sample_video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = sample_masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (sample_pred_flows_bi[0][:, s_f:e_f-1], sample_pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
sample_masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = sample_frames[:, s_f:e_f] * (1 - sample_masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * sample_masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = sample_masks_dilated.size()
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, sample_pred_flows_bi, sample_masks_dilated, 'nearest')
updated_frames = sample_frames * (1 - sample_masks_dilated) + prop_imgs.view(b, t, 3, h, w) * sample_masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
## replace input frames/masks with updated frames/masks
for i,index in enumerate(index_sample):
frames[0][index] = updated_frames[0][i]
masks_dilated[0][index] = updated_masks[0][i]
# ---- frame-by-frame image propagation ----
masked_frames = frames * (1 - masks_dilated)
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
if video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = masks_dilated.size()
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
comp_frames = [None] * video_length
neighbor_stride = neighbor_length // 2
if video_length > subvideo_length:
ref_num = subvideo_length // ref_stride
else:
ref_num = -1
torch.cuda.empty_cache()
# ---- feature propagation + transformer ----
for f in tqdm(range(0, video_length, neighbor_stride)):
neighbor_ids = [
i for i in range(max(0, f - neighbor_stride),
min(video_length, f + neighbor_stride + 1))
]
ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
with torch.no_grad():
# 1.0 indicates mask
l_t = len(neighbor_ids)
# pred_img = selected_imgs # results of image propagation
pred_img = self.model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
pred_img = pred_img.view(-1, 3, h, w)
## compose with input frames
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
binary_masks = masks_dilated_ori[0, neighbor_ids, :, :, :].cpu().permute(
0, 2, 3, 1).numpy().astype(np.uint8) # use original mask
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
+ ori_frames_inp[idx] * (1 - binary_masks[i])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
comp_frames[idx] = comp_frames[idx].astype(np.uint8)
torch.cuda.empty_cache()
##save composed video##
comp_frames = [cv2.resize(f, out_size) for f in comp_frames]
writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"),
fps, (comp_frames[0].shape[1],comp_frames[0].shape[0]))
for f in range(video_length):
frame = comp_frames[f].astype(np.uint8)
writer.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
writer.release()
torch.cuda.empty_cache()
return output_path
if __name__ == '__main__':
device = get_device()
propainter_model_dir = "weights/propainter"
propainter = Propainter(propainter_model_dir, device=device)
video = "examples/example1/video.mp4"
mask = "examples/example1/mask.mp4"
output = "results/priori.mp4"
res = propainter.forward(video, mask, output)
|