DiffuEraser-demo / diffueraser /diffueraser.py
fffiloni's picture
Migrated from GitHub
8eb8300 verified
raw
history blame
18 kB
import gc
import copy
import cv2
import os
import numpy as np
import torch
import torchvision
from einops import repeat
from PIL import Image, ImageFilter
from diffusers import (
AutoencoderKL,
DDPMScheduler,
UniPCMultistepScheduler,
LCMScheduler,
)
from diffusers.schedulers import TCDScheduler
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.utils.torch_utils import randn_tensor
from transformers import AutoTokenizer, PretrainedConfig
from libs.unet_motion_model import MotionAdapter, UNetMotionModel
from libs.brushnet_CA import BrushNetModel
from libs.unet_2d_condition import UNet2DConditionModel
from diffueraser.pipeline_diffueraser import StableDiffusionDiffuEraserPipeline
checkpoints = {
"2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0],
"4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0],
"8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0],
"16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0],
"Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5],
"Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5],
"Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5],
"LCM-Like LoRA": [
"pcm_{}_lcmlike_lora_converted.safetensors",
4,
0.0,
],
}
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def resize_frames(frames, size=None):
if size is not None:
out_size = size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
frames = [f.resize(process_size) for f in frames]
else:
out_size = frames[0].size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
if not out_size == process_size:
frames = [f.resize(process_size) for f in frames]
return frames
def read_mask(validation_mask, fps, n_total_frames, img_size, mask_dilation_iter, frames):
cap = cv2.VideoCapture(validation_mask)
if not cap.isOpened():
print("Error: Could not open mask video.")
exit()
mask_fps = cap.get(cv2.CAP_PROP_FPS)
if mask_fps != fps:
cap.release()
raise ValueError("The frame rate of all input videos needs to be consistent.")
masks = []
masked_images = []
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
if(idx >= n_total_frames):
break
mask = Image.fromarray(frame[...,::-1]).convert('L')
if mask.size != img_size:
mask = mask.resize(img_size, Image.NEAREST)
mask = np.asarray(mask)
m = np.array(mask > 0).astype(np.uint8)
m = cv2.erode(m,
cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)),
iterations=1)
m = cv2.dilate(m,
cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)),
iterations=mask_dilation_iter)
mask = Image.fromarray(m * 255)
masks.append(mask)
masked_image = np.array(frames[idx])*(1-(np.array(mask)[:,:,np.newaxis].astype(np.float32)/255))
masked_image = Image.fromarray(masked_image.astype(np.uint8))
masked_images.append(masked_image)
idx += 1
cap.release()
return masks, masked_images
def read_priori(priori, fps, n_total_frames, img_size):
cap = cv2.VideoCapture(priori)
if not cap.isOpened():
print("Error: Could not open video.")
exit()
priori_fps = cap.get(cv2.CAP_PROP_FPS)
if priori_fps != fps:
cap.release()
raise ValueError("The frame rate of all input videos needs to be consistent.")
prioris=[]
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
if(idx >= n_total_frames):
break
img = Image.fromarray(frame[...,::-1])
if img.size != img_size:
img = img.resize(img_size)
prioris.append(img)
idx += 1
cap.release()
os.remove(priori) # remove priori
return prioris
def read_video(validation_image, video_length, nframes, max_img_size):
vframes, aframes, info = torchvision.io.read_video(filename=validation_image, pts_unit='sec', end_pts=video_length) # RGB
fps = info['video_fps']
n_total_frames = int(video_length * fps)
n_clip = int(np.ceil(n_total_frames/nframes))
frames = list(vframes.numpy())[:n_total_frames]
frames = [Image.fromarray(f) for f in frames]
max_size = max(frames[0].size)
if(max_size<256):
raise ValueError("The resolution of the uploaded video must be larger than 256x256.")
if(max_size>4096):
raise ValueError("The resolution of the uploaded video must be smaller than 4096x4096.")
if max_size>max_img_size:
ratio = max_size/max_img_size
ratio_size = (int(frames[0].size[0]/ratio),int(frames[0].size[1]/ratio))
img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8)
resize_flag=True
elif (frames[0].size[0]%8==0) and (frames[0].size[1]%8==0):
img_size = frames[0].size
resize_flag=False
else:
ratio_size = frames[0].size
img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8)
resize_flag=True
if resize_flag:
frames = resize_frames(frames, img_size)
img_size = frames[0].size
return frames, fps, img_size, n_clip, n_total_frames
class DiffuEraser:
def __init__(
self, device, base_model_path, vae_path, diffueraser_path, revision=None,
ckpt="Normal CFG 4-Step", mode="sd15", loaded=None):
self.device = device
## load model
self.vae = AutoencoderKL.from_pretrained(vae_path)
self.noise_scheduler = DDPMScheduler.from_pretrained(base_model_path,
subfolder="scheduler",
prediction_type="v_prediction",
timestep_spacing="trailing",
rescale_betas_zero_snr=True
)
self.tokenizer = AutoTokenizer.from_pretrained(
base_model_path,
subfolder="tokenizer",
use_fast=False,
)
text_encoder_cls = import_model_class_from_model_name_or_path(base_model_path,revision)
self.text_encoder = text_encoder_cls.from_pretrained(
base_model_path, subfolder="text_encoder"
)
self.brushnet = BrushNetModel.from_pretrained(diffueraser_path, subfolder="brushnet")
self.unet_main = UNetMotionModel.from_pretrained(
diffueraser_path, subfolder="unet_main",
)
## set pipeline
self.pipeline = StableDiffusionDiffuEraserPipeline.from_pretrained(
base_model_path,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet=self.unet_main,
brushnet=self.brushnet
).to(self.device, torch.float16)
self.pipeline.scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config)
self.pipeline.set_progress_bar_config(disable=True)
self.noise_scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
## use PCM
self.ckpt = ckpt
PCM_ckpts = checkpoints[ckpt][0].format(mode)
self.guidance_scale = checkpoints[ckpt][2]
if loaded != (ckpt + mode):
self.pipeline.load_lora_weights(
"weights/PCM_Weights", weight_name=PCM_ckpts, subfolder=mode
)
loaded = ckpt + mode
if ckpt == "LCM-Like LoRA":
self.pipeline.scheduler = LCMScheduler()
else:
self.pipeline.scheduler = TCDScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
timestep_spacing="trailing",
)
self.num_inference_steps = checkpoints[ckpt][1]
self.guidance_scale = 0
def forward(self, validation_image, validation_mask, priori, output_path,
max_img_size = 1280, video_length=2, mask_dilation_iter=4,
nframes=22, seed=None, revision = None, guidance_scale=None, blended=True):
validation_prompt = "" #
guidance_scale_final = self.guidance_scale if guidance_scale==None else guidance_scale
if (max_img_size<256 or max_img_size>1920):
raise ValueError("The max_img_size must be larger than 256, smaller than 1920.")
################ read input video ################
frames, fps, img_size, n_clip, n_total_frames = read_video(validation_image, video_length, nframes, max_img_size)
video_len = len(frames)
################ read mask ################
validation_masks_input, validation_images_input = read_mask(validation_mask, fps, video_len, img_size, mask_dilation_iter, frames)
################ read priori ################
prioris = read_priori(priori, fps, n_total_frames, img_size)
## recheck
n_total_frames = min(min(len(frames), len(validation_masks_input)), len(prioris))
if(n_total_frames<22):
raise ValueError("The effective video duration is too short. Please make sure that the number of frames of video, mask, and priori is at least greater than 22 frames.")
validation_masks_input = validation_masks_input[:n_total_frames]
validation_images_input = validation_images_input[:n_total_frames]
frames = frames[:n_total_frames]
prioris = prioris[:n_total_frames]
prioris = resize_frames(prioris)
validation_masks_input = resize_frames(validation_masks_input)
validation_images_input = resize_frames(validation_images_input)
resized_frames = resize_frames(frames)
##############################################
# DiffuEraser inference
##############################################
print("DiffuEraser inference...")
if seed is None:
generator = None
else:
generator = torch.Generator(device=self.device).manual_seed(seed)
## random noise
real_video_length = len(validation_images_input)
tar_width, tar_height = validation_images_input[0].size
shape = (
nframes,
4,
tar_height//8,
tar_width//8
)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet_main is not None:
prompt_embeds_dtype = self.unet_main.dtype
else:
prompt_embeds_dtype = torch.float16
noise_pre = randn_tensor(shape, device=torch.device(self.device), dtype=prompt_embeds_dtype, generator=generator)
noise = repeat(noise_pre, "t c h w->(repeat t) c h w", repeat=n_clip)[:real_video_length,...]
################ prepare priori ################
images_preprocessed = []
for image in prioris:
image = self.image_processor.preprocess(image, height=tar_height, width=tar_width).to(dtype=torch.float32)
image = image.to(device=torch.device(self.device), dtype=torch.float16)
images_preprocessed.append(image)
pixel_values = torch.cat(images_preprocessed)
with torch.no_grad():
pixel_values = pixel_values.to(dtype=torch.float16)
latents = []
num=4
for i in range(0, pixel_values.shape[0], num):
latents.append(self.vae.encode(pixel_values[i : i + num]).latent_dist.sample())
latents = torch.cat(latents, dim=0)
latents = latents * self.vae.config.scaling_factor #[(b f), c1, h, w], c1=4
torch.cuda.empty_cache()
timesteps = torch.tensor([0], device=self.device)
timesteps = timesteps.long()
validation_masks_input_ori = copy.deepcopy(validation_masks_input)
resized_frames_ori = copy.deepcopy(resized_frames)
################ Pre-inference ################
if n_total_frames > nframes*2: ## do pre-inference only when number of input frames is larger than nframes*2
## sample
step = n_total_frames / nframes
sample_index = [int(i * step) for i in range(nframes)]
sample_index = sample_index[:22]
validation_masks_input_pre = [validation_masks_input[i] for i in sample_index]
validation_images_input_pre = [validation_images_input[i] for i in sample_index]
latents_pre = torch.stack([latents[i] for i in sample_index])
## add proiri
noisy_latents_pre = self.noise_scheduler.add_noise(latents_pre, noise_pre, timesteps)
latents_pre = noisy_latents_pre
with torch.no_grad():
latents_pre_out = self.pipeline(
num_frames=nframes,
prompt=validation_prompt,
images=validation_images_input_pre,
masks=validation_masks_input_pre,
num_inference_steps=self.num_inference_steps,
generator=generator,
guidance_scale=guidance_scale_final,
latents=latents_pre,
).latents
torch.cuda.empty_cache()
def decode_latents(latents, weight_dtype):
latents = 1 / self.vae.config.scaling_factor * latents
video = []
for t in range(latents.shape[0]):
video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample)
video = torch.concat(video, dim=0)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
video = video.float()
return video
with torch.no_grad():
video_tensor_temp = decode_latents(latents_pre_out, weight_dtype=torch.float16)
images_pre_out = self.image_processor.postprocess(video_tensor_temp, output_type="pil")
torch.cuda.empty_cache()
## replace input frames with updated frames
black_image = Image.new('L', validation_masks_input[0].size, color=0)
for i,index in enumerate(sample_index):
latents[index] = latents_pre_out[i]
validation_masks_input[index] = black_image
validation_images_input[index] = images_pre_out[i]
resized_frames[index] = images_pre_out[i]
else:
latents_pre_out=None
sample_index=None
gc.collect()
torch.cuda.empty_cache()
################ Frame-by-frame inference ################
## add priori
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
latents = noisy_latents
with torch.no_grad():
images = self.pipeline(
num_frames=nframes,
prompt=validation_prompt,
images=validation_images_input,
masks=validation_masks_input,
num_inference_steps=self.num_inference_steps,
generator=generator,
guidance_scale=guidance_scale_final,
latents=latents,
).frames
images = images[:real_video_length]
gc.collect()
torch.cuda.empty_cache()
################ Compose ################
binary_masks = validation_masks_input_ori
mask_blurreds = []
if blended:
# blur, you can adjust the parameters for better performance
for i in range(len(binary_masks)):
mask_blurred = cv2.GaussianBlur(np.array(binary_masks[i]), (21, 21), 0)/255.
binary_mask = 1-(1-np.array(binary_masks[i])/255.) * (1-mask_blurred)
mask_blurreds.append(Image.fromarray((binary_mask*255).astype(np.uint8)))
binary_masks = mask_blurreds
comp_frames = []
for i in range(len(images)):
mask = np.expand_dims(np.array(binary_masks[i]),2).repeat(3, axis=2).astype(np.float32)/255.
img = (np.array(images[i]).astype(np.uint8) * mask \
+ np.array(resized_frames_ori[i]).astype(np.uint8) * (1 - mask)).astype(np.uint8)
comp_frames.append(Image.fromarray(img))
default_fps = fps
writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"),
default_fps, comp_frames[0].size)
for f in range(real_video_length):
img = np.array(comp_frames[f]).astype(np.uint8)
writer.write(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
writer.release()
################################
return output_path