File size: 18,043 Bytes
8eb8300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gc
import copy
import cv2
import os
import numpy as np
import torch
import torchvision
from einops import repeat
from PIL import Image, ImageFilter
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    UniPCMultistepScheduler,
    LCMScheduler,
)
from diffusers.schedulers import TCDScheduler
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.utils.torch_utils import randn_tensor
from transformers import AutoTokenizer, PretrainedConfig

from libs.unet_motion_model import MotionAdapter, UNetMotionModel
from libs.brushnet_CA import BrushNetModel
from libs.unet_2d_condition import UNet2DConditionModel
from diffueraser.pipeline_diffueraser import StableDiffusionDiffuEraserPipeline


checkpoints = {
    "2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0],
    "4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0],
    "8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0],
    "16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0],
    "Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5],
    "Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5],
    "Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5],
    "LCM-Like LoRA": [
        "pcm_{}_lcmlike_lora_converted.safetensors",
        4,
        0.0,
    ],
}

def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")

def resize_frames(frames, size=None):    
    if size is not None:
        out_size = size
        process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
        frames = [f.resize(process_size) for f in frames]
    else:
        out_size = frames[0].size
        process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
        if not out_size == process_size:
            frames = [f.resize(process_size) for f in frames]
        
    return frames

def read_mask(validation_mask, fps, n_total_frames, img_size, mask_dilation_iter, frames):
    cap = cv2.VideoCapture(validation_mask)
    if not cap.isOpened():
        print("Error: Could not open mask video.")
        exit()
    mask_fps = cap.get(cv2.CAP_PROP_FPS)
    if mask_fps != fps:
        cap.release()
        raise ValueError("The frame rate of all input videos needs to be consistent.")

    masks = []
    masked_images = []
    idx = 0
    while True:
        ret, frame = cap.read()
        if not ret:  
            break
        if(idx >= n_total_frames):
            break
        mask = Image.fromarray(frame[...,::-1]).convert('L')
        if mask.size != img_size:
            mask = mask.resize(img_size, Image.NEAREST)
        mask = np.asarray(mask)
        m = np.array(mask > 0).astype(np.uint8)
        m = cv2.erode(m,
                    cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)),
                    iterations=1)
        m = cv2.dilate(m,
                    cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)),
                    iterations=mask_dilation_iter)

        mask = Image.fromarray(m * 255)
        masks.append(mask)

        masked_image = np.array(frames[idx])*(1-(np.array(mask)[:,:,np.newaxis].astype(np.float32)/255))
        masked_image = Image.fromarray(masked_image.astype(np.uint8))
        masked_images.append(masked_image)

        idx += 1
    cap.release()

    return masks, masked_images

def read_priori(priori, fps, n_total_frames, img_size):
    cap = cv2.VideoCapture(priori)
    if not cap.isOpened():
        print("Error: Could not open video.")
        exit()
    priori_fps = cap.get(cv2.CAP_PROP_FPS)
    if priori_fps != fps:
        cap.release()
        raise ValueError("The frame rate of all input videos needs to be consistent.")

    prioris=[]
    idx = 0
    while True:
        ret, frame = cap.read()
        if not ret: 
            break
        if(idx >= n_total_frames):
            break
        img = Image.fromarray(frame[...,::-1])
        if img.size != img_size:
            img = img.resize(img_size)
        prioris.append(img)
        idx += 1
    cap.release()

    os.remove(priori) # remove priori 

    return prioris

def read_video(validation_image, video_length, nframes, max_img_size):
    vframes, aframes, info = torchvision.io.read_video(filename=validation_image, pts_unit='sec', end_pts=video_length) # RGB
    fps = info['video_fps']
    n_total_frames = int(video_length * fps)
    n_clip = int(np.ceil(n_total_frames/nframes))

    frames = list(vframes.numpy())[:n_total_frames]
    frames = [Image.fromarray(f) for f in frames]
    max_size = max(frames[0].size)
    if(max_size<256):
        raise ValueError("The resolution of the uploaded video must be larger than 256x256.")
    if(max_size>4096):
        raise ValueError("The resolution of the uploaded video must be smaller than 4096x4096.")
    if max_size>max_img_size:
        ratio = max_size/max_img_size
        ratio_size = (int(frames[0].size[0]/ratio),int(frames[0].size[1]/ratio))
        img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8)
        resize_flag=True
    elif (frames[0].size[0]%8==0) and (frames[0].size[1]%8==0):
        img_size = frames[0].size
        resize_flag=False
    else:
        ratio_size = frames[0].size
        img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8)
        resize_flag=True
    if resize_flag:
        frames = resize_frames(frames, img_size)
        img_size = frames[0].size

    return frames, fps, img_size, n_clip, n_total_frames


class DiffuEraser:
    def __init__(
            self, device, base_model_path, vae_path, diffueraser_path, revision=None,
            ckpt="Normal CFG 4-Step", mode="sd15", loaded=None):
        self.device = device

        ## load model
        self.vae = AutoencoderKL.from_pretrained(vae_path)
        self.noise_scheduler = DDPMScheduler.from_pretrained(base_model_path, 
                subfolder="scheduler",
                prediction_type="v_prediction",
                timestep_spacing="trailing",
                rescale_betas_zero_snr=True
            )
        self.tokenizer = AutoTokenizer.from_pretrained(
                    base_model_path,
                    subfolder="tokenizer",
                    use_fast=False,
                )
        text_encoder_cls = import_model_class_from_model_name_or_path(base_model_path,revision)
        self.text_encoder = text_encoder_cls.from_pretrained(
                base_model_path, subfolder="text_encoder"
            )
        self.brushnet = BrushNetModel.from_pretrained(diffueraser_path, subfolder="brushnet")
        self.unet_main = UNetMotionModel.from_pretrained(
            diffueraser_path, subfolder="unet_main",
        )

        ## set pipeline
        self.pipeline = StableDiffusionDiffuEraserPipeline.from_pretrained(
            base_model_path,
            vae=self.vae,
            text_encoder=self.text_encoder,
            tokenizer=self.tokenizer,
            unet=self.unet_main,
            brushnet=self.brushnet
        ).to(self.device, torch.float16)
        self.pipeline.scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config)
        self.pipeline.set_progress_bar_config(disable=True)

        self.noise_scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)

        ## use PCM
        self.ckpt = ckpt
        PCM_ckpts = checkpoints[ckpt][0].format(mode)
        self.guidance_scale = checkpoints[ckpt][2]
        if loaded != (ckpt + mode):
            self.pipeline.load_lora_weights(
                "weights/PCM_Weights", weight_name=PCM_ckpts, subfolder=mode
            )
            loaded = ckpt + mode

            if ckpt == "LCM-Like LoRA":
                self.pipeline.scheduler = LCMScheduler()
            else:
                self.pipeline.scheduler = TCDScheduler(
                    num_train_timesteps=1000,
                    beta_start=0.00085,
                    beta_end=0.012,
                    beta_schedule="scaled_linear",
                    timestep_spacing="trailing",
                )
        self.num_inference_steps = checkpoints[ckpt][1]
        self.guidance_scale = 0

    def forward(self, validation_image, validation_mask, priori, output_path,
                max_img_size = 1280, video_length=2, mask_dilation_iter=4,
                nframes=22, seed=None, revision = None, guidance_scale=None, blended=True):
        validation_prompt = ""  # 
        guidance_scale_final = self.guidance_scale if guidance_scale==None else guidance_scale

        if (max_img_size<256 or max_img_size>1920):
            raise ValueError("The max_img_size must be larger than 256, smaller than 1920.")

        ################ read input video ################ 
        frames, fps, img_size, n_clip, n_total_frames = read_video(validation_image, video_length, nframes, max_img_size)
        video_len = len(frames)

        ################     read mask    ################ 
        validation_masks_input, validation_images_input = read_mask(validation_mask, fps, video_len, img_size, mask_dilation_iter, frames)
  
        ################    read priori   ################  
        prioris = read_priori(priori, fps, n_total_frames, img_size)

        ## recheck
        n_total_frames = min(min(len(frames), len(validation_masks_input)), len(prioris))
        if(n_total_frames<22):
            raise ValueError("The effective video duration is too short. Please make sure that the number of frames of video, mask, and priori is at least greater than 22 frames.")
        validation_masks_input = validation_masks_input[:n_total_frames]
        validation_images_input = validation_images_input[:n_total_frames]
        frames = frames[:n_total_frames]
        prioris = prioris[:n_total_frames]

        prioris = resize_frames(prioris)
        validation_masks_input = resize_frames(validation_masks_input)
        validation_images_input = resize_frames(validation_images_input)
        resized_frames = resize_frames(frames)

        ##############################################
        # DiffuEraser inference
        ##############################################
        print("DiffuEraser inference...")
        if seed is None:
            generator = None
        else:
            generator = torch.Generator(device=self.device).manual_seed(seed)

        ## random noise
        real_video_length = len(validation_images_input)
        tar_width, tar_height = validation_images_input[0].size 
        shape = (
            nframes,
            4,
            tar_height//8,
            tar_width//8
        )
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet_main is not None:
            prompt_embeds_dtype = self.unet_main.dtype
        else:
            prompt_embeds_dtype = torch.float16
        noise_pre = randn_tensor(shape, device=torch.device(self.device), dtype=prompt_embeds_dtype, generator=generator) 
        noise = repeat(noise_pre, "t c h w->(repeat t) c h w", repeat=n_clip)[:real_video_length,...]
        
        ################  prepare priori  ################
        images_preprocessed = []
        for image in prioris:
            image = self.image_processor.preprocess(image, height=tar_height, width=tar_width).to(dtype=torch.float32)
            image = image.to(device=torch.device(self.device), dtype=torch.float16)
            images_preprocessed.append(image)
        pixel_values = torch.cat(images_preprocessed)

        with torch.no_grad():
            pixel_values = pixel_values.to(dtype=torch.float16)
            latents = []
            num=4
            for i in range(0, pixel_values.shape[0], num):
                latents.append(self.vae.encode(pixel_values[i : i + num]).latent_dist.sample())
            latents = torch.cat(latents, dim=0)
        latents = latents * self.vae.config.scaling_factor #[(b f), c1, h, w], c1=4
        torch.cuda.empty_cache()  
        timesteps = torch.tensor([0], device=self.device)
        timesteps = timesteps.long()

        validation_masks_input_ori = copy.deepcopy(validation_masks_input)
        resized_frames_ori = copy.deepcopy(resized_frames)
        ################  Pre-inference  ################
        if n_total_frames > nframes*2: ## do pre-inference only when number of input frames is larger than nframes*2
            ## sample
            step = n_total_frames / nframes
            sample_index = [int(i * step) for i in range(nframes)]
            sample_index = sample_index[:22]
            validation_masks_input_pre = [validation_masks_input[i] for i in sample_index]
            validation_images_input_pre = [validation_images_input[i] for i in sample_index]
            latents_pre = torch.stack([latents[i] for i in sample_index])

            ## add proiri
            noisy_latents_pre = self.noise_scheduler.add_noise(latents_pre, noise_pre, timesteps) 
            latents_pre = noisy_latents_pre

            with torch.no_grad():
                latents_pre_out = self.pipeline(
                    num_frames=nframes, 
                    prompt=validation_prompt, 
                    images=validation_images_input_pre, 
                    masks=validation_masks_input_pre, 
                    num_inference_steps=self.num_inference_steps, 
                    generator=generator,
                    guidance_scale=guidance_scale_final,
                    latents=latents_pre,
                ).latents
            torch.cuda.empty_cache()  

            def decode_latents(latents, weight_dtype):
                latents = 1 / self.vae.config.scaling_factor * latents
                video = []
                for t in range(latents.shape[0]):
                    video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample)
                video = torch.concat(video, dim=0)
                # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
                video = video.float()
                return video
            with torch.no_grad():
                video_tensor_temp = decode_latents(latents_pre_out, weight_dtype=torch.float16)
                images_pre_out  = self.image_processor.postprocess(video_tensor_temp, output_type="pil")
            torch.cuda.empty_cache()  

            ## replace input frames with updated frames
            black_image = Image.new('L', validation_masks_input[0].size, color=0)
            for i,index in enumerate(sample_index):
                latents[index] = latents_pre_out[i]
                validation_masks_input[index] = black_image
                validation_images_input[index] = images_pre_out[i]
                resized_frames[index] = images_pre_out[i]
        else:
            latents_pre_out=None
            sample_index=None
        gc.collect()
        torch.cuda.empty_cache()

        ################  Frame-by-frame inference  ################
        ## add priori
        noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) 
        latents = noisy_latents
        with torch.no_grad():
            images = self.pipeline(
                num_frames=nframes, 
                prompt=validation_prompt, 
                images=validation_images_input, 
                masks=validation_masks_input, 
                num_inference_steps=self.num_inference_steps, 
                generator=generator,
                guidance_scale=guidance_scale_final,
                latents=latents,
            ).frames
        images = images[:real_video_length]

        gc.collect()
        torch.cuda.empty_cache()

        ################ Compose ################
        binary_masks = validation_masks_input_ori
        mask_blurreds = []
        if blended:
            # blur, you can adjust the parameters for better performance
            for i in range(len(binary_masks)):
                mask_blurred = cv2.GaussianBlur(np.array(binary_masks[i]), (21, 21), 0)/255.
                binary_mask = 1-(1-np.array(binary_masks[i])/255.) * (1-mask_blurred)
                mask_blurreds.append(Image.fromarray((binary_mask*255).astype(np.uint8)))
            binary_masks = mask_blurreds
        
        comp_frames = []
        for i in range(len(images)):
            mask = np.expand_dims(np.array(binary_masks[i]),2).repeat(3, axis=2).astype(np.float32)/255.
            img = (np.array(images[i]).astype(np.uint8) * mask \
                + np.array(resized_frames_ori[i]).astype(np.uint8) * (1 - mask)).astype(np.uint8)
            comp_frames.append(Image.fromarray(img))

        default_fps = fps
        writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"),
                            default_fps, comp_frames[0].size)
        for f in range(real_video_length):
            img = np.array(comp_frames[f]).astype(np.uint8)
            writer.write(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
        writer.release()
        ################################

        return output_path